Spectroscopic properties in the liquid phase: Combining high-level ab initio calculations and classical molecular dynamics

被引:41
作者
Pavone, M [1 ]
Brancato, G [1 ]
Morelli, G [1 ]
Barone, V [1 ]
机构
[1] Univ Naples Federico II, Dipartimento Chim, I-80126 Naples, Italy
关键词
D O I
10.1002/cphc.200500357
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present an integrated computational tool, rooted in density functional theory, the polarizable continuum model, and classical molecular dynamics employing spherical boundary conditions, to study the spectroscopic observables of molecules in solution. As a test case, a modified OPLS-AA force field has been developed and used to compute the UV and NMR spectra of acetone in aqueous solution. The results show that provided the classical force fields are carefully reparameterized and validated, the proposed approach is robust and effective, and can also be used by nonspecialists to provide a general and powerful complement to experimental techniques.
引用
收藏
页码:148 / 156
页数:9
相关论文
共 73 条
[1]   From classical density functionals to adiabatic connection methods. The state of the art. [J].
Adamo, C ;
di Matteo, A ;
Barone, V .
ADVANCES IN QUANTUM CHEMISTRY, VOL 36: FROM ELECTRONIC STRUCTURE TO TIME-DEPENDENT PROCESSES, 1999, 36 :45-75
[2]   Toward reliable density functional methods without adjustable parameters: The PBE0 model [J].
Adamo, C ;
Barone, V .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (13) :6158-6170
[3]   A TDDFT study of the electronic spectrum of s-tetrazine in the gas-phase and in aqueous solution [J].
Adamo, C ;
Barone, V .
CHEMICAL PHYSICS LETTERS, 2000, 330 (1-2) :152-160
[4]  
ADAMO C, 1999, THEORETICAL BIOCH PR, V9
[5]   Coupled cluster calculation of the n→π* electronic transition of acetone in aqueous solution [J].
Aidas, K ;
Kongsted, J ;
Osted, A ;
Mikkelsen, KV ;
Christiansen, O .
JOURNAL OF PHYSICAL CHEMISTRY A, 2005, 109 (35) :8001-8010
[6]  
Allen M. P., 2009, Computer Simulation of Liquids
[7]   Molecular dynamics simulations with constrained roto-translational motions: Theoretical basis and statistical mechanical consistency [J].
Amadei, A ;
Chillemi, G ;
Ceruso, MA ;
Grottesi, A ;
Di Nola, A .
JOURNAL OF CHEMICAL PHYSICS, 2000, 112 (01) :9-23
[8]  
AMADEI A, 2005, J PHYS CHEM-US, V122, P124
[9]   A theoretical investigation of valence and Rydberg electronic states of acrolein [J].
Aquilante, F ;
Barone, V ;
Roos, BO .
JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (23) :12323-12334
[10]   A first-principles method to model perturbed electronic wavefunctions: the effect of an external homogeneous electric field [J].
Aschi, M ;
Spezia, R ;
Di Nola, A ;
Amadei, A .
CHEMICAL PHYSICS LETTERS, 2001, 344 (3-4) :374-380