Inhomogeneous iterates of contraction mappings and nonlinear ergodic theorems

被引:61
作者
Chen, YZ [1 ]
机构
[1] Univ Pittsburgh, Div Nat Sci, Bradford, PA 16701 USA
关键词
cone; fixed point; generalized contraction; hilbert metric; nonlinear ergodic theorem; ordered Banach space;
D O I
10.1016/S0362-546X(98)00157-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The works of T. Fujimoto, U. Krause and R.D. Nussbaum on the nonlinear ergodic theory depend heavily on projective metrics. For this reason, the convergence problems of inhomogeneous iterates in metric spaces are considered and applied to study the nonlinear ergodic problems in ordered Banach spaces, which are related to certain problems from population biology and economics.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 11 条
[1]  
[Anonymous], GEOMETRICAL METHODS
[2]   Integral equations, implicit functions, and fixed points [J].
Burton, TA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (08) :2383-2390
[3]  
CHEN YZ, 1993, J MATH ANAL APPL, V117, P31
[4]   ERGODIC THEOREMS IN DEMOGRAPHY [J].
COHEN, JE .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 1 (02) :275-295
[5]   STABLE INHOMOGENEOUS ITERATIONS OF NONLINEAR POSITIVE OPERATORS ON BANACH-SPACES [J].
FUJIMOTO, T ;
KRAUSE, U .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1994, 25 (04) :1195-1202
[6]  
FUJIMOTO T, 1986, COMPETITION INSTABIL
[7]  
GUO DJ, 1988, NONLINEAR PROBLEMS
[9]  
KRAUSE U, 1994, P 1 WORLD C NONL AN, P1992
[10]  
Nussbaum R.D., 1988, MEM AM MATH SOC, V75