Fibril Formation by pH and Temperature Responsive Silk-Elastin Block Copolymers

被引:22
作者
Golinska, Monika D. [1 ]
Pham, Thao T. H. [1 ,3 ]
Werten, Marc W. T. [2 ]
de Wolf, Frits A. [2 ]
Stuart, Martien A. Cohen [1 ]
van der Gucht, Jasper [1 ]
机构
[1] Wageningen Univ, Lab Phys Chem & Colloid Sci, NL-6703 HB Wageningen, Netherlands
[2] Wageningen UR Food & Biobased Res, NL-6708 WG Wageningen, Netherlands
[3] Fdn FOM, NL-3527 JP Utrecht, Netherlands
关键词
PROTEIN; BIOSYNTHESIS; POLYPEPTIDE; PURIFICATION; POLYMERS; DELIVERY; SEQUENCE; BEHAVIOR; FUSION; LENGTH;
D O I
10.1021/bm3011775
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In this report, we study the self-assembly of two silk-elastin-like proteins: one is a diblock S24E40 composed of 24 silk-like (S) repeats and 40 elastin-like (E) repeats; the other is a triblock S12C4E40, in which the S and E blocks are separated by a random coil block (C-4). Upon lowering the pH, the acidic silk-like blocks fold and self-assemble into fibrils by a nucleation-and-growth process. While silk-like polymers without elastin-like blocks form fibrils by heterogeneous nucleation, leading to monodisperse populations, the elastin-like blocks allow for homogeneous nucleation, which gives rise to polydisperse length distributions, as well as a concentration-dependent fibril length. Moreover, the elastin-like blocks introduce temperature sensitivity: at high temperature, the fibrils become sticky and tend to bundle and aggregate in an irreversible manner. Concentrated solutions of S12C4E40 form weak gels at low pH that irreversibly lose elasticity in temperature cycling; this is also attributed to fibril aggregation.
引用
收藏
页码:48 / 55
页数:8
相关论文
共 32 条
[1]   Self-Assembly of Silk-Collagen-like Triblock Copolymers Resembles a Supramolecular Living Polymerization [J].
Beun, Lennart H. ;
Beaudoux, Xavier J. ;
Kleijn, J. Mieke ;
de Wolf, Frits A. ;
Stuart, Martien A. Cohen .
ACS NANO, 2012, 6 (01) :133-140
[2]  
Cantor EJ, 1997, J BIOCHEM, V122, P217
[3]   In-situ self-assembling protein polymer gel systems for administration, delivery, and release of drugs [J].
Cappello, J ;
Crissman, JW ;
Crissman, M ;
Ferrari, FA ;
Textor, G ;
Wallis, O ;
Whitledge, JR ;
Zhou, X ;
Burman, D ;
Aukerman, L ;
Stedronsky, ER .
JOURNAL OF CONTROLLED RELEASE, 1998, 53 (1-3) :105-117
[4]   Characterization of structurally related adenovirus-laden silk-elastinlike hydrogels [J].
Dandu, Ramesh ;
Ghandehari, Hamidreza ;
Cappello, Joseph .
JOURNAL OF BIOACTIVE AND COMPATIBLE POLYMERS, 2008, 23 (01) :5-19
[5]   Swelling behavior of a genetically engineered silk-elastinlike protein polymer hydrogel [J].
Dinerman, AA ;
Cappello, J ;
Ghandehari, H ;
Hoag, SW .
BIOMATERIALS, 2002, 23 (21) :4203-4210
[6]   Solute diffusion in genetically engineered silk-elastinlike protein polymer hydrogels [J].
Dinerman, AA ;
Cappello, J ;
Ghandehari, H ;
Hoag, SW .
JOURNAL OF CONTROLLED RELEASE, 2002, 82 (2-3) :277-287
[7]   Molecular engineering of silk-elastinlike polymers for matrix-mediated gene delivery: Biosynthesis and characterization [J].
Haider, Mohamed ;
Leung, Vivian ;
Ferrari, Franco ;
Crissman, John ;
Powell, James ;
Cappello, Joseph ;
Ghandehari, Hamidreza .
MOLECULAR PHARMACEUTICS, 2005, 2 (02) :139-150
[8]   Biosynthesis and applications of silk-like and collagen-like proteins [J].
Huang, Jia ;
Foo, C. Wong Po ;
Kaplan, David L. .
POLYMER REVIEWS, 2007, 47 (01) :29-62
[9]   CHEMICAL SEQUENCE CONTROL OF BETA-SHEET ASSEMBLY IN MACROMOLECULAR CRYSTALS OF PERIODIC POLYPEPTIDES [J].
KREJCHI, MT ;
ATKINS, EDT ;
WADDON, AJ ;
FOURNIER, MJ ;
MASON, TL ;
TIRRELL, DA .
SCIENCE, 1994, 265 (5177) :1427-1432
[10]   FUTURE-DIRECTIONS IN BIOMATERIALS [J].
LANGER, R ;
CIMA, LG ;
TAMADA, JA ;
WINTERMANTEL, E .
BIOMATERIALS, 1990, 11 (09) :738-745