A global view of residues in the torus

被引:23
作者
Cattani, E [1 ]
Dickenstein, A [1 ]
机构
[1] UNIV BUENOS AIRES,FAC CIENCIAS EXACTAS & NAT,DEPT MATEMAT,RA-1428 BUENOS AIRES,DF,ARGENTINA
基金
美国国家科学基金会;
关键词
COMPLETE-INTERSECTIONS; MEMBERSHIP PROBLEM; TRACES;
D O I
10.1016/S0022-4049(97)00008-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the total sum of Grothendieck residues of a Laurent polynomial relative to a family f(1), ..., f(n) of sparse Laurent polynomials in n variables with a finite set of common zeroes in the torus T = (C*)(n). Under appropriate assumptions we may embed T ina toric variety X in such a way that the total residue may be computed by a global object in X, the toric residue. This yields a description of some of its properties and new symbolic algorithms for its computation. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:119 / 144
页数:26
相关论文
共 19 条
[1]  
[Anonymous], 1978, USPEKHI MAT NAUK
[2]   WHY YOU CANNOT EVEN HOPE TO USE GROBNER BASES IN PUBLIC-KEY CRYPTOGRAPHY - AN OPEN-LETTER TO A SCIENTIST WHO FAILED AND A CHALLENGE TO THOSE WHO HAVE NOT YET FAILED [J].
BARKEE, B ;
CAN, DC ;
ECKS, J ;
MORIARTY, T ;
REE, RF .
JOURNAL OF SYMBOLIC COMPUTATION, 1994, 18 (06) :497-501
[3]   ON THE HODGE STRUCTURE OF PROJECTIVE HYPERSURFACES IN TORIC VARIETIES [J].
BATYREV, VV ;
COX, DA .
DUKE MATHEMATICAL JOURNAL, 1994, 75 (02) :293-338
[4]  
Becker E, 1996, PROG MATH, V143, P79
[5]  
Cattani E, 1996, PROG MATH, V143, P135
[6]  
Cox D. A., 1995, J ALGEBRAIC GEOM, V4, P17
[7]   Toric residues [J].
Cox, DA .
ARKIV FOR MATEMATIK, 1996, 34 (01) :73-96
[8]  
Danilov V. I., 1978, Uspekhi Mat. Nauk, V33, P247, DOI 10.1070/RM1978v033n02ABEH002305
[9]   AN EFFECTIVE RESIDUAL CRITERION FOR THE MEMBERSHIP PROBLEM IN C[Z1 ... ZN] [J].
DICKENSTEIN, A ;
SESSA, C .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1991, 74 (02) :149-158
[10]   THE MEMBERSHIP PROBLEM FOR UNMIXED POLYNOMIAL IDEALS IS SOLVABLE IN SINGLE EXPONENTIAL TIME [J].
DICKENSTEIN, A ;
FITCHAS, N ;
GIUSTI, M ;
SESSA, C .
DISCRETE APPLIED MATHEMATICS, 1991, 33 (1-3) :73-94