Control of Muscle Mitochondria by Insulin Entails Activation of Akt2-mtNOS Pathway: Implications for the Metabolic Syndrome

被引:30
作者
Finocchietto, Paola [1 ,3 ]
Barreyro, Fernando [1 ,3 ]
Holod, Silvia [1 ,2 ]
Peralta, Jorge [1 ,3 ]
Franco, Maria C. [1 ]
Mendez, Carlos [4 ]
Converso, Daniela P. [1 ]
Estevez, Alvaro [5 ]
Carreras, Maria C. [1 ,2 ]
Poderoso, Juan J. [1 ,3 ]
机构
[1] Univ Hosp, Lab Oxygen Metab, Buenos Aires, DF, Argentina
[2] Univ Buenos Aires, Univ Hosp, Sch Pharm & Biochem, Dept Clin Biochem, Buenos Aires, DF, Argentina
[3] Univ Buenos Aires, Univ Hosp, Dept Med, Buenos Aires, DF, Argentina
[4] Univ Buenos Aires, Sch Med, Dept Human Biochem, Buenos Aires, DF, Argentina
[5] Cornell Univ, Burke Med Res Inst, Ithaca, NY USA
来源
PLOS ONE | 2008年 / 3卷 / 03期
关键词
D O I
10.1371/journal.pone.0001749
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: In the metabolic syndrome with hyperinsulinemia, mitochondrial inhibition facilitates muscle fat and glycogen accumulation and accelerates its progression. In the last decade, nitric oxide (NO) emerged as a typical mitochondrial modulator by reversibly inhibiting citochrome oxidase and oxygen utilization. We wondered whether insulin-operated signaling pathways modulate mitochondrial respiration via NO, to alternatively release complete glucose oxidation to CO(2) and H(2)O or to drive glucose storage to glycogen. Methodology/Principal Findings: We illustrate here that NO produced by translocated nNOS (mtNOS) is the insulin-signaling molecule that controls mitochondrial oxygen utilization. We evoke a hyperinsulinemic-normoglycemic non-invasive clamp by subcutaneously injecting adult male rats with long-lasting human insulin glargine that remains stable in plasma by several hours. At a precise concentration, insulin increased phospho-Akt2 that translocates to mitochondria and determines in situ phosphorylation and substantial cooperative mtNOS activation (+4-8 fold, P<.05), high NO, and a lowering of mitochondrial oxygen uptake and resting metabolic rate (-25 to -60%, P<.05). Comparing in vivo insulin metabolic effects on gastrocnemius muscles by direct electroporation of siRNA nNOS or empty vector in the two legs of the same animal, confirmed that in the silenced muscles disrupted mtNOS allows higher oxygen uptake and complete (U-(14)C)-glucose utilization respect to normal mtNOS in the vector-treated ones (respectively 37 +/- 3 vs 10 +/- 1 mu molO(2)/h. g tissue and 13 +/- 61 vs 7.2 +/- 1 mmol (3)H(2)O/h.g tissue, P<.05), which reciprocally restricted glycogen-synthesis by a half. Conclusions/Significance: These evidences show that after energy replenishment, insulin depresses mitochondrial respiration in skeletal muscle via NO which permits substrates to be deposited as macromolecules; at discrete hyperinsulinemia, persistent mtNOS activation could contribute to mitochondrial dysfunction with insulin resistance and obesity and therefore, to the progression of the metabolic syndrome.
引用
收藏
页数:13
相关论文
共 49 条
[41]   SH2-containing inositol phosphatase 2 predominantly regulates Akt2, and not Akt1, phosphorylation at the plasma membrane in response to insulin in 3T3-L1 adipocytes [J].
Sasaoka, T ;
Wada, T ;
Fukui, K ;
Murakami, S ;
Ishihara, H ;
Suzuki, R ;
Tobe, K ;
Kadowaki, T ;
Kobayashi, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (15) :14835-14843
[42]   Effect of insulin on human skeletal muscle mitochondrial ATP production, protein synthesis, and mRNA transcripts [J].
Stump, CS ;
Short, KR ;
Bigelow, ML ;
Schimke, JM ;
Nair, KS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (13) :7996-8001
[43]   Muscle mitochondrial ATP synthesis and glucose transport/phosphorylation in type 2 diabetes [J].
Szendroedi, Julia ;
Schmid, Albrecht I. ;
Chmelik, Marek ;
Toth, Christian ;
Brehm, Attila ;
Krssak, Martin ;
Nowotny, Peter ;
Wolzt, Michael ;
Waldhaus, Werner ;
Roden, Michael .
PLOS MEDICINE, 2007, 4 (05) :858-867
[44]   C-terminal tail residue Arg1400 enables NADPH to regulate electron transfer in neuronal nitric-oxide synthase [J].
Tiso, M ;
Konas, DW ;
Panda, K ;
Garcin, ED ;
Sharma, M ;
Getzoff, ED ;
Stuehr, DJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (47) :39208-39219
[45]   Nitric oxide and the control of firefly flashing [J].
Trimmer, BA ;
Aprille, JR ;
Dudzinski, DM ;
Lagace, CJ ;
Lewis, SM ;
Michel, T ;
Qazi, S ;
Zayas, RM .
SCIENCE, 2001, 292 (5526) :2486-2488
[46]   Mechanisms of protein import into mitochondria [J].
Truscott, KN ;
Brandner, K ;
Pfanner, N .
CURRENT BIOLOGY, 2003, 13 (08) :R326-R337
[47]   Protein tyrosine nitration in the mitochondria from diabetic mouse heart - Implications to dysfunctional mitochondria in diabetes [J].
Turko, IV ;
Li, L ;
Aulak, KS ;
Stuehr, DJ ;
Chang, JY ;
Murad, F .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (36) :33972-33977
[48]   S-nitrosylation-dependent inactivation of Akt/protein kinase B in insulin resistance [J].
Yasukawa, T ;
Tokunaga, E ;
Ota, H ;
Sugita, H ;
Martyn, JAJ ;
Kaneki, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (09) :7511-7518
[49]   Effect of sustained hypobaric hypoxia during maturation and aging on rat myocardium. II. mtNOS activity [J].
Zaobornyj, T ;
Valdez, LB ;
La Padula, P ;
Costa, LE ;
Boveris, A .
JOURNAL OF APPLIED PHYSIOLOGY, 2005, 98 (06) :2370-2375