Phase diffusion in localized spatiotemporal amplitude chaos

被引:16
作者
Granzow, GD
Riecke, H
机构
[1] Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL
关键词
D O I
10.1103/PhysRevLett.77.2451
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present numerical simulations of coupled Ginzburg-Landau equations describing parametrically excited waves which reveal persistent dynamics due to the occurrence of phase slips in sequential pairs, with the second phase slip quickly following and negating the first. Of particular interest are solutions where these double phase slips occur irregularly in space and time within a spatially localized region. An effective phase diffusion equation utilizing the long-term phase conservation of the solution explains the localization of this new form of amplitude chaos.
引用
收藏
页码:2451 / 2454
页数:4
相关论文
共 24 条
[11]   PATTERN COMPETITION AND THE DECAY OF UNSTABLE PATTERNS IN QUASI-ONE-DIMENSIONAL SYSTEMS [J].
KRAMER, L ;
SCHOBER, HR ;
ZIMMERMANN, W .
PHYSICA D-NONLINEAR PHENOMENA, 1988, 31 (02) :212-226
[12]   Localized spatiotemporal chaos in surface waves [J].
Kudrolli, A ;
Gollub, JP .
PHYSICAL REVIEW E, 1996, 54 (02) :R1052-R1055
[13]   Phase turbulence in the two-dimensional complex Ginzburg-Landau equation [J].
Manneville, P ;
Chate, H .
PHYSICA D-NONLINEAR PHENOMENA, 1996, 96 (1-4) :30-46
[14]   DOMAIN-STRUCTURES IN 4TH-ORDER PHASE AND GINZBURG-LANDAU EQUATIONS [J].
RAITT, D ;
RIECKE, H .
PHYSICA D, 1995, 82 (1-2) :79-94
[15]   TEMPORAL-MODULATION OF TRAVELING WAVES [J].
REHBERG, I ;
RASENAT, S ;
FINEBERG, J ;
JUAREZ, MD ;
STEINBERG, V .
PHYSICAL REVIEW LETTERS, 1988, 61 (21) :2449-2452
[16]  
RIECKE H, 1990, NATO ADV SCI I B-PHY, V225, P437
[17]   TIME-MODULATED OSCILLATORY CONVECTION [J].
RIECKE, H ;
CRAWFORD, JD ;
KNOBLOCH, E .
PHYSICAL REVIEW LETTERS, 1988, 61 (17) :1942-1942
[18]   STABLE WAVE-NUMBER KINKS IN PARAMETRICALLY EXCITED STANDING WAVES [J].
RIECKE, H .
EUROPHYSICS LETTERS, 1990, 11 (03) :213-218
[19]   SPATIOTEMPORAL CHAOS IN THE ONE-DIMENSIONAL COMPLEX GINZBURG-LANDAU EQUATION [J].
SHRAIMAN, BI ;
PUMIR, A ;
VANSAARLOOS, W ;
HOHENBERG, PC ;
CHATE, H ;
HOLEN, M .
PHYSICA D, 1992, 57 (3-4) :241-248
[20]  
TENNAKOON S, IN PRESS PHYS REV E