Dimensionless numbers and correlating equations for the analysis of the membrane-gas diffusion electrode assembly in polymer electrolyte fuel cells

被引:35
作者
Gyenge, EL [1 ]
机构
[1] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
polymer electrolyte fuel cells; gas diffusion electrodes; dimensionless numbers;
D O I
10.1016/j.jpowsour.2005.02.034
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Quraishi-Fahidy method [Can. J. Chem. Eng. 59 (1981) 563] was employed to derive characteristic dimensionless numbers for the membrane-electrolyte, cathode catalyst layer and gas diffuser, respectively, based on the model presented by Bernardi and Verbrugge for polymer electrolyte fuel cells [AIChE J. 37 (1991) 1151]. Monomial correlations among dimensionless numbers were developed and tested against experimental and mathematical modeling results. Dimensionless numbers comparing the bulk and surface-convective ionic conductivities, the electric and viscous forces and the current density and the fixed surface charges, were employed to describe the membrane ohmic drop and its non-linear dependence on current density due to membrane dehydration. The analysis of the catalyst layer yielded electrode kinetic equivalents of the second Damkohler number and Thiele modulus, influencing the penetration depth of the oxygen reduction front based on the pseudohomogeneous film model. The correlating equations for the catalyst layer could describe in a general analytical form, all the possible electrode polarization scenarios such as electrode kinetic control coupled or not with ionic and/or oxygen mass transport limitation. For the gas diffusion-backing layer correlations are presented in terms of the Nusselt number for mass transfer in electrochemical systems. The dimensionless number-based correlating equations for the membrane electrode assembly (MEA) could provide a practical approach to quantify single-cell polarization results obtained under a variety of experimental conditions and to implement them in models of the fuel cell stack. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:105 / 121
页数:17
相关论文
共 48 条
[1]  
AMPHLETT JC, 1995, J ELECTROCHEM SOC, V142, P1, DOI 10.1149/1.2043866
[2]   TAFEL SLOPES FOR FLOODED DIFFUSION ELECTRODES [J].
AUSTIN, LG .
TRANSACTIONS OF THE FARADAY SOCIETY, 1964, 60 (4997) :1319-&
[3]   Modelling of polymer electrolyte membrane fuel cell stacks based on a hydraulic network approach [J].
Baschuk, JJ ;
Li, XG .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2004, 28 (08) :697-724
[4]   A MATHEMATICAL-MODEL OF THE SOLID-POLYMER-ELECTROLYTE FUEL-CELL [J].
BERNARDI, DM ;
VERBRUGGE, MW .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1992, 139 (09) :2477-2491
[5]   MATHEMATICAL-MODEL OF A GAS-DIFFUSION ELECTRODE BONDED TO A POLYMER ELECTROLYTE [J].
BERNARDI, DM ;
VERBRUGGE, MW .
AICHE JOURNAL, 1991, 37 (08) :1151-1163
[6]  
BIRD RB, 2002, TRANSPORT PHENOMENA, P555
[7]   Modelling the PEM fuel cell cathode [J].
Broka, K ;
Ekdunge, P .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1997, 27 (03) :281-289
[8]   Investigation of the transversal water profile in nafion membranes in polymer electrolyte fuel cells [J].
Büchi, FN ;
Scherer, GG .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (03) :A183-A188
[9]   Performance of polymer electrolyte membrane fuel cell (PEMFC) stacks Part I. Evaluation and simulation of an air-breathing PEMFC stack [J].
Chu, D ;
Jiang, RZ .
JOURNAL OF POWER SOURCES, 1999, 83 (1-2) :128-133
[10]   THE ROLE OF ANALYSIS IN THE RATE-PROCESSES [J].
CHURCHILL, SW .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1992, 31 (03) :643-658