Interaction of Monotopic Membrane Enzymes with a Lipid Bilayer: A Coarse-Grained MD Simulation Study

被引:42
作者
Balali-Mood, Kia [1 ]
Bond, Peter J. [1 ]
Sansom, Mark S. P. [1 ]
机构
[1] Univ Oxford, Dept Biochem, Oxford OX1 3QU, England
基金
英国生物技术与生命科学研究理事会; 英国工程与自然科学研究理事会;
关键词
MOLECULAR-DYNAMICS SIMULATIONS; PROSTAGLANDIN H-2 SYNTHASE-1; CRYSTAL-STRUCTURE; STRUCTURAL INSIGHTS; FORCE-FIELD; SIDE-CHAIN; PROTEIN; MODEL; INSERTION; PROVIDES;
D O I
10.1021/bi8017398
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Monotopic membrane proteins bind tightly to cell membranes but do not generally span the lipid bilayer. Their interactions with lipid bilayers may be studied via coarse-grained molecular dynamics (CG-MD) simulations. Understanding Such interactions is important as monotopic enzymes frequently act on hydrophobic substrates, while X-ray structures rarely provide direct information about their interactions with membranes. CG-MD self-assembly simulations enable prediction of the orientation and depth of insertion into a lipid bilayer of a monotopic protein, and also of the interactions of individual protein residues with lipid molecules. The CG-MD method has been evaluated via comparison with extended (>30 ns) atomistic simulations of monoamine oxidase, revealing good agreement between the results of coarse-grained and atomistic simulations. CG-MD simulations have been applied to a set of I I monotopic proteins for which three-dimensional structures are available. These proteins may be divided into two groups on the basis of the results of the simulations. One group consists of those proteins which are inserted into the lipid bilayer to a limited extent, interacting mainly at the phospholipid-water interface. The second group consists of those which are inserted more deeply into the bilayer. Those monotopic proteins which are inserted more deeply cause significant local perturbation of bilayer properties such as bilayer thickness. Deeper insertion seems to correlate with a greater number of basic residues in the "foot" whereby a monotopic protein interacts with the membrane.
引用
收藏
页码:2135 / 2145
页数:11
相关论文
共 61 条
[1]  
[Anonymous], 1996, Biomolecular Simulation: the GROMOS96 Manual and User Guide
[2]   Four-scale description of membrane sculpting by BAR domains [J].
Arkhipov, Anton ;
Yin, Ying ;
Schulten, Klaus .
BIOPHYSICAL JOURNAL, 2008, 95 (06) :2806-2821
[3]   Anisotropy of fluctuation dynamics of proteins with an elastic network model [J].
Atilgan, AR ;
Durell, SR ;
Jernigan, RL ;
Demirel, MC ;
Keskin, O ;
Bahar, I .
BIOPHYSICAL JOURNAL, 2001, 80 (01) :505-515
[4]   Multiscale modeling of biomolecular systems: in serial and in parallel [J].
Ayton, Gary S. ;
Noid, Will G. ;
Voth, Gregory A. .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2007, 17 (02) :192-198
[5]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[6]   Insights into the mode of inhibition of human mitochondrial monoamine oxidase B from high-resolution crystal structures [J].
Binda, C ;
Li, M ;
Hubálek, F ;
Restelli, N ;
Edmondson, DE ;
Mattevi, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (17) :9750-9755
[7]   Coarse-Grained Molecular Dynamics Simulations of the Energetics of Helix Insertion into a Lipid Bilayer [J].
Bond, Peter J. ;
Wee, Chze Ling ;
Sansom, Mark S. P. .
BIOCHEMISTRY, 2008, 47 (43) :11321-11331
[8]   Coarse-grained molecular dynamics simulations of membrane proteins and peptides [J].
Bond, Peter J. ;
Holyoake, John ;
Ivetac, Anthony ;
Khalid, Syma ;
Sansom, Mark S. P. .
JOURNAL OF STRUCTURAL BIOLOGY, 2007, 157 (03) :593-605
[9]   Insertion and assembly of membrane proteins via simulation [J].
Bond, PJ ;
Sansom, MSP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (08) :2697-2704
[10]   Structural commonalities among integral membrane enzymes [J].
Bracey, MH ;
Cravatt, BF ;
Stevens, RC .
FEBS LETTERS, 2004, 567 (2-3) :159-165