ZnE (E = S, Se, Te) nanowires grown by the solution-liquid-solid mechanism: Importance of reactant decomposition kinetics and the solvent

被引:35
作者
Fanfair, Dayne D. [1 ]
Korgel, Brian A. [1 ]
机构
[1] Univ Texas Austin, Dept Chem Engn, Texas Mat Inst, Ctr Nano & Mol Sci & Technol, Austin, TX 78712 USA
关键词
D O I
10.1021/cg701191k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The synthesis of ZnE (E = S, Se, Te) nanowires in solution via the solution-liquid-solid (SLS) mechanism is reported. Relatively low nanowire growth temperatures, between 340 and 350 degrees C, were made possible by using bismuth nanocrystals as seeds. Diethyl zinc and zinc(oleate)(2) were studied as Zn reactants, and TOP:E complexes were explored as the chalcogen source. The influence of the solvent on the quality and yield of the nanowires was studied with reactions carried out in either the noncoordinating solvent squalane or the coordinating solvents, trioctylamine (TOA) or trioctylphosphine oxide (TOPO). The solvent and reactant chemistry dramatically affect the yield and quality of the nanowires, with Et2Zn being more reactive than Zn(oleate)(2). The use of coordinating solvents provides a means to optimize nanowire growth.
引用
收藏
页码:3246 / 3252
页数:7
相关论文
共 74 条
[1]   Synthesis of CdS and ZnS nanowires using single-source molecular precursors [J].
Barrelet, CJ ;
Wu, Y ;
Bell, DC ;
Lieber, CM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (38) :11498-11499
[2]   Molecular beam epitaxy-grown ZnSe nanowires [J].
Chan, S. K. ;
Liu, N. ;
Cai, Y. ;
Wang, N. ;
Wong, G. K. L. ;
Sou, I. K. .
JOURNAL OF ELECTRONIC MATERIALS, 2006, 35 (06) :1246-1250
[3]   Control of growth orientation for epitaxially grown ZnSe nanowires [J].
Chan, SK ;
Cai, Y ;
Wang, N ;
Sou, IK .
APPLIED PHYSICS LETTERS, 2006, 88 (01)
[4]   ZnS nanowires and their coaxial lateral nanowire heterostructures with BN [J].
Chen, Z. G. ;
Zou, J. ;
Lu, G. Q. ;
Liu, G. ;
Li, F. ;
Cheng, H. M. .
APPLIED PHYSICS LETTERS, 2007, 90 (10)
[5]   Low-temperature synthesis of ZnSe nanowires and nanosaws by catalyst-assisted molecular-beam epitaxy [J].
Colli, A ;
Hofmann, S ;
Ferrari, AC ;
Ducati, C ;
Martelli, F ;
Rubini, S ;
Cabrini, S ;
Franciosi, A ;
Robertson, J .
APPLIED PHYSICS LETTERS, 2005, 86 (15) :1-3
[6]   Bicrystalline zinc oxide nanowires [J].
Dai, Y ;
Zhang, Y ;
Bai, YQ ;
Wang, ZL .
CHEMICAL PHYSICS LETTERS, 2003, 375 (1-2) :96-101
[7]   Lamellar twinning in semiconductor nanowires [J].
Davidson, Forrest M. ;
Lee, Doh C., III ;
Fanfair, Dayne D. ;
Korgel, Brian A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (07) :2929-2935
[8]   Lasing in ZnS nanowires grown on anodic aluminum oxide templates [J].
Ding, JX ;
Zapien, JA ;
Chen, WW ;
Lifshitz, Y ;
Lee, ST ;
Meng, XM .
APPLIED PHYSICS LETTERS, 2004, 85 (12) :2361-2363
[9]   Solution-based growth and structural characterization of homo- and heterobranched semiconductor nanowires [J].
Dong, Angang ;
Tang, Rui ;
Buhro, William E. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (40) :12254-12262
[10]   Solution-liquid-solid (SLS) growth of ZnSe-ZnTe quantum wires having axial heterojunctions [J].
Dong, Angang ;
Wang, Fudong ;
Daulton, Tyrone L. ;
Buhro, William E. .
NANO LETTERS, 2007, 7 (05) :1308-1313