Standard forms of noisy quantum operations via depolarization -: art. no. 052326

被引:67
作者
Dür, W
Hein, M
Cirac, JI
Briegel, HJ
机构
[1] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria
[2] Austrian Acad Sci, Inst Quantenopt & Quanteninformat, Innsbruck, Austria
[3] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
来源
PHYSICAL REVIEW A | 2005年 / 72卷 / 05期
关键词
D O I
10.1103/PhysRevA.72.052326
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider completely positive maps that describe noisy, multiparticle unitary operations. We show that by random single-particle operations the completely positive maps can be depolarized to a standard form with a reduced number of parameters describing the noise process in such a way that the noiseless (unitary) part of the evolution is not altered. A further reduction of the parameters, in many cases even to a single one (i.e., global white noise), is possible by tailoring the decoherence process and increasing the amount of noise. We generalize these results to the dynamical case where the noisy evolution is described by a master equation of Lindblad form, and the noiseless evolution is specified by an interaction Hamiltonian. The resulting standard forms may be used to compute lower bounds on channel capacities, to simplify quantum process tomography or to derive error thresholds for entanglement purification and quantum computation.
引用
收藏
页数:30
相关论文
共 34 条
[1]  
Arrighi P, 2004, ANN PHYS-NEW YORK, V311, P26, DOI 10.1006/j.aop.2003.11.005
[2]   Universal simulation of Markovian quantum dynamics [J].
Bacon, Dave ;
Childs, Andrew M. ;
Chuang, Isaac L. ;
Kempe, Julia ;
Leung, Debbie W. ;
Zhou, Xinlan .
Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 64 (06) :1-062302
[3]   Optimal simulation of two-qubit Hamiltonians using general local operations [J].
Bennett, CH ;
Cirac, JI ;
Leifer, MS ;
Leung, DW ;
Linden, N ;
Popescu, S ;
Vidal, G .
PHYSICAL REVIEW A, 2002, 66 (01) :123051-1230516
[4]   Purification of noisy entanglement and faithful teleportation via noisy channels [J].
Bennett, CH ;
Brassard, G ;
Popescu, S ;
Schumacher, B ;
Smolin, JA ;
Wootters, WK .
PHYSICAL REVIEW LETTERS, 1996, 76 (05) :722-725
[5]  
BENNETT CH, QUANTPH9804053
[6]   QUANTUM OPTICAL MASTER-EQUATIONS - THE USE OF DAMPING BASES [J].
BRIEGEL, HJ ;
ENGLERT, BG .
PHYSICAL REVIEW A, 1993, 47 (04) :3311-3329
[7]   Entangling operations and their implementation using a small amount of entanglement [J].
Cirac, JI ;
Dür, W ;
Kraus, B ;
Lewenstein, M .
PHYSICAL REVIEW LETTERS, 2001, 86 (03) :544-547
[8]  
DAFFER S, QUANTPH0309081, P60401
[9]   Universal quantum computation and simulation using any entangling Hamiltonian and local unitaries [J].
Dodd, JL ;
Nielsen, MA ;
Bremner, MJ ;
Thew, RT .
PHYSICAL REVIEW A, 2002, 65 (04) :4
[10]   Entanglement purification for quantum computation -: art. no. 067901 [J].
Dür, W ;
Briegel, HJ .
PHYSICAL REVIEW LETTERS, 2003, 90 (06) :4