Polychlorinated biphenyls (PCBs) may be metabolically activated to electrophiles, which bind to proteins and nucleic acids. One activation scheme involves the formation of reactive arene oxide intermediates during cytochrome P450-catalyzed hydroxylation. We propose a second activation pathway whereby PCB catechol and hydroquinone metabolites may be oxidized to reactive semiquinones and/or quinones. By employing 4-monochlorobiphenyl (4-MCB) as a model substrate and liver microsomes from rats treated with phenobarbital and 3-methylcholanthrene, five monol and three diol metabolites were identified. The major metabolite was 4-chloro-4'-monohydroxybiphenyl, followed by, in decreasing order, 4-chloro-3',4'-dihydroxybiphenyl, unknown B (a monol), 4-chloro-2',3'-dihydroxybiphenyl, 4-chloro-3'-hydroxybiphenyl, 4-chloro-2',5'-dihydroxybiphenyl, unknown A (a monol), and 4-chloro-2'-monohydroxybiphenyl. A trace of a dihydrodiol was detected by GC/MS. To elucidate the source of the diols, 4-MCB and the synthetic monol metabolites 4-chloro-2'-/-3'-/-4'-monohydroxybipheny were each employed as substrates in incubations with microsomes from rats treated with phenobarbital, 3-methylcholanthrene, or both inducers. The three diol metabolites were all produced from 4-MCB in incubations with microsomes from 3-methylcholanthrene-treated rats, but incubations with microsomes from phenobarbital-treated rats did not yield detectable amounts of 4-chloro-2',3'-dihydroxybiphenyl. 4-Chloro-2',3'-dihydroxybiphenyl was only found as a product of 4-chloro-2'-monohydroxybiphenyl. The 4-chloro-2',5'-dihydroxybiphenyl was found in extracts of incubations with 4-chloro-2'- and -3'-monohydroxybiphenyls, while the 4-chloro-3',4'-dihydroxybiphenyl was the only product found from 4-chloro-3'- and -4'-monohydroxybiphenyls. No other chlorinated diols were detected by GC/MS. These data suggest that the major route of biosynthesis of the diols was via a second hydroxylation step and not aromatization of dihydrodiols derived from primary arene oxides. We propose a scheme for the in vitro synthesis of the catechol and hydroquinone metabolites, which may be precursors for electrophilic semiquinone or quinone products with the potential for cytotoxic and genotoxic effects.