Transcriptome analysis in mitochondrial disorders

被引:13
作者
Elstner, Matthias [1 ]
Turnbull, Douglass M. [2 ,3 ]
机构
[1] Univ Munich, Friedrich Baur Inst, Dept Neurol, D-81377 Munich, Germany
[2] Newcastle Univ, Inst Ageing & Hlth, Ctr Brain Ageing & Vital, Newcastle Upon Tyne NE2 4HH, Tyne & Wear, England
[3] Newcastle Univ, Mitochondrial Res Grp, Newcastle Upon Tyne NE2 4HH, Tyne & Wear, England
基金
英国医学研究理事会; 英国惠康基金;
关键词
Mitochondrial disease; Gene expression; Microarray; OXPHOS; Mitochondrial biogenesis; PGC-1; alpha; Cell cycle; Epigenetics; FOCUSED CDNA MICROARRAY; GENE-EXPRESSION CHANGES; RESPIRATORY-CHAIN; SKELETAL-MUSCLE; CELLS LACKING; DEGENERATIVE DISEASES; OXIDATIVE STRESS; MTDNA MUTATIONS; NUCLEAR GENES; DNA;
D O I
10.1016/j.brainresbull.2011.07.018
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The spectrum of genetic disorders associated with primary mitochondrial dysfunction ranges from isolated hearing loss to lethal neonatal syndromes. Mitochondrial biogenesis and function relies on the enigmatic interplay of the mitochondrial and nuclear genome and allows for adjustment of energy consumption to substrate availability and adaption to genetic and toxic stressors. Whole transcriptome studies permit a global perspective on these events and promise deeper insight into mitochondrial physiology and dysfunction. Data coming from microarray studies has revealed the activation of an intricate signaling network that promotes bioenergetic adaption through autophagy and enhanced mitochondrial biogenesis. The effectors of this network are currently under much investigation for their therapeutic potential. Microarray data also implicate a profound impact of mitochondrial dysfunction on global nuclear transcription activity through alteration of genomic stability, cell cycle progression and epigenetic regulation. In this review, results of gene expression studies performed on human and animal tissue as well as cell culture models with mitochondrial dysfunction are summarized and discussed. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:285 / 293
页数:9
相关论文
共 91 条
[1]   Mechanism of neurodegeneration of neurons with mitochondrial DNA mutations [J].
Abramov, Andrey Y. ;
Smulders-Srinivasan, Tora K. ;
Kirby, Denise M. ;
Acin-Perez, Rebeca ;
Antonio Enriquez, Jose ;
Lightowlers, Robert N. ;
Duchen, Michael R. ;
Turnbull, Douglass M. .
BRAIN, 2010, 133 :797-807
[2]   Impaired mitochondrial bioenergetics determines glutamate-induced delayed calcium deregulation in neurons [J].
Abramov, Andrey Y. ;
Duchen, Michael R. .
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2010, 1800 (03) :297-304
[3]   Mitochondrial DNA deletions inhibit proteasomal activity and stimulate an autophagic transcript [J].
Alemi, Mansour ;
Prigione, Alessandro ;
Wong, Alice ;
Schoenfeld, Robert ;
DiMauro, Salvatore ;
Hirano, Michio ;
Taroni, Franco ;
Cortopassi, Gino .
FREE RADICAL BIOLOGY AND MEDICINE, 2007, 42 (01) :32-43
[4]   Development of a human mitochondria-focused cDNA microarray (hMitChip) and validation in skeletal muscle cells: implications for pharmaco- and mitogenomics [J].
Alesci, S. ;
Manoli, I. ;
Michopoulos, V. J. ;
Brouwers, F. M. ;
Le, H. ;
Gold, P. W. ;
Blackman, M. R. ;
Rennert, O. M. ;
Su, Y. A. ;
Chrousos, G. P. .
PHARMACOGENOMICS JOURNAL, 2006, 6 (05) :333-342
[5]   Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism [J].
Aragones, Julian ;
Schneider, Martin ;
Van Geyte, Katie ;
Fraisl, Peter ;
Dresselaers, Tom ;
Mazzone, Massimiliano ;
Dirkx, Ruud ;
Zacchigna, Serena ;
Lemieux, Helene ;
Jeoung, Nam Ho ;
Lambrechts, Diether ;
Bishop, Tammie ;
Lafuste, Peggy ;
Diez-Juan, Antonio ;
Harten, Sarah K. ;
Van Noten, Pieter ;
De Bock, Katrien ;
Willam, Carsten ;
Tjwa, Marc ;
Grosfeld, Alexandra ;
Navet, Rachel ;
Moons, Lieve ;
Vandendriessche, Thierry ;
Deroose, Christophe ;
Wijeyekoon, Bhathiya ;
Nuyts, Johan ;
Jordan, Benedicte ;
Silasi-Mansat, Robert ;
Lupu, Florea ;
Dewerchin, Mieke ;
Pugh, Chris ;
Salmon, Phil ;
Mortelmans, Luc ;
Gallez, Bernard ;
Gorus, Frans ;
Buyse, Johan ;
Sluse, Francis ;
Harris, Robert A. ;
Gnaiger, Erich ;
Hespel, Peter ;
Van Hecke, Paul ;
Schuit, Frans ;
Van Veldhoven, Paul ;
Ratcliffe, Peter ;
Baes, Myriam ;
Maxwell, Patrick ;
Carmeliet, Peter .
NATURE GENETICS, 2008, 40 (02) :170-180
[6]   Mitochondrial Metabolism Modulation: A New Therapeutic Approach for Parkinson's Disease [J].
Arduino, D. M. ;
Esteves, A. R. ;
Oliveira, C. R. ;
Cardoso, S. M. .
CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS, 2010, 9 (01) :105-119
[7]   Apoptosis in mitochondrial myopathies is linked to mitochondrial proliferation [J].
Auré, K ;
Fayet, G ;
Lacène, E ;
Romero, NB ;
Lombès, A .
BRAIN, 2006, 129 :1249-1259
[8]   Third-generation human mitochondria-focused cDNA microarray and its bioinformatic tools for analysis of gene expression [J].
Bai, Xueyan ;
Wu, Jun ;
Zhang, Qiuyang ;
Alesci, Salvatore ;
Manoli, Irini ;
Blackman, Marc R. ;
Chrousos, George P. ;
Goldstein, Allan L. ;
Rennert, Owen M. ;
Su, Yan A. .
BIOTECHNIQUES, 2007, 42 (03) :365-375
[9]   Activation of peroxisome proliferator-activated receptor pathway stimulates the mitochondrial respiratory chain and can correct deficiencies in patients' cells lacking its components [J].
Bastin, Jean ;
Aubey, Flore ;
Rotig, Agnes ;
Munnich, Arnold ;
Djouadi, Fatima .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2008, 93 (04) :1433-1441
[10]   Adaptive responses to mitochondrial dysfunction in the ρ° Namalwa cell [J].
Behan, A ;
Doyle, S ;
Farrell, M .
MITOCHONDRION, 2005, 5 (03) :173-193