Third-generation human mitochondria-focused cDNA microarray and its bioinformatic tools for analysis of gene expression

被引:22
作者
Bai, Xueyan
Wu, Jun
Zhang, Qiuyang
Alesci, Salvatore
Manoli, Irini
Blackman, Marc R.
Chrousos, George P.
Goldstein, Allan L.
Rennert, Owen M.
Su, Yan A.
机构
[1] George Washington Univ, Sch Med & Hlth Sci, Washington, DC 20037 USA
[2] NIH, Bethesda, MD 20892 USA
关键词
D O I
10.2144/000112388
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
To facilitate profiling mitochondrial transcriptomes, we developed a third-generation human mitochondria -focused cDNA microarray (hMitChip3) and its bioinformatic tools. hMitChip3 consists of the 37 mitochondrial DNA-encoded genes, 1098 nuclear DNA-encoded and in mitochondria -related genes, and 225 controls, each in triplicate. The bioinformatic tools included data anal sis procedures and customized database for interpretation of results. The database associated 645 molecular,functions with 946 hMitChip3 genes, 612 biological processes with 930 genes, 172 cellular components with 869 genes, 107 biological chemistry pathways with 476 genes, 23 reactome events with 227 genes, 320 genetic disorders with 237 genes, and 87 drugs targets with 55 genes. To test these tools, hMitChip3 was used to compare expression profiles between human melanoma cell lines UACC903 (rapidlly dividing) and UACC903(+6) (slowly dividing). Our results demonstrated internal gene-set consistency (correlation R > 0.980 +/- 10.005) and interexperimental reproducibility (R >= 0.931 +/- 0.013). Expression patterns of 16 genes, involved in DNA, RNA, or protein biosyntheses in mitochondrial and other organelles, were consistent with the proliferation rates of both cell lines, and the pattern. of 6 tested genes were verified by quantitative reverse transcription PCR (RT-PCR). Thus, hMitChip3 and its bioinformatics software provide an integrated tool for profliling mitochondria-focused gene expression.
引用
收藏
页码:365 / 375
页数:11
相关论文
共 45 条
[1]   Development of a human mitochondria-focused cDNA microarray (hMitChip) and validation in skeletal muscle cells: implications for pharmaco- and mitogenomics [J].
Alesci, S. ;
Manoli, I. ;
Michopoulos, V. J. ;
Brouwers, F. M. ;
Le, H. ;
Gold, P. W. ;
Blackman, M. R. ;
Rennert, O. M. ;
Su, Y. A. ;
Chrousos, G. P. .
PHARMACOGENOMICS JOURNAL, 2006, 6 (05) :333-342
[2]   hMiDas and hMitChip: New opportunities in mitochondrial Bioinformatics and genomic medicine [J].
Alesci, S ;
Su, YA ;
Chrousos, GP .
17TH IEEE SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, PROCEEDINGS, 2004, :329-334
[3]  
[Anonymous], P SOC PHOTO-OPT INS
[4]   Which is better for cDNA-microarray-based classification: ratios or direct intensities [J].
Attoor, S ;
Dougherty, ER ;
Chen, Y ;
Bittner, ML ;
Trent, JM .
BIOINFORMATICS, 2004, 20 (16) :2513-2520
[5]   Comparative analysis of algorithms for signal quantitation from oligonucleotide microarrays [J].
Barash, Y ;
Dehan, E ;
Krupsky, M ;
Franklin, W ;
Geraci, M ;
Friedman, N ;
Kaminski, N .
BIOINFORMATICS, 2004, 20 (06) :839-846
[6]   A comparison of normalization methods for high density oligonucleotide array data based on variance and bias [J].
Bolstad, BM ;
Irizarry, RA ;
Åstrand, M ;
Speed, TP .
BIOINFORMATICS, 2003, 19 (02) :185-193
[7]   Mitochondrial uncoupling: A key contributor to reduced cardiac efficiency in diabetes [J].
Boudina, Sihem ;
Abel, E. Dale .
PHYSIOLOGY, 2006, 21 :250-258
[8]  
Brandon MC, 2005, NUCLEIC ACIDS RES, V33, pD611
[9]   Systematic identification of human mitochondrial disease genes through integrative genomics [J].
Calvo, S ;
Jain, M ;
Xie, XH ;
Sheth, SA ;
Chang, B ;
Goldberger, OA ;
Spinazzola, A ;
Zeviani, M ;
Carr, SA ;
Mootha, VK .
NATURE GENETICS, 2006, 38 (05) :576-582
[10]   Searching for nuclear-mitochondrial genes [J].
Chinnery, PF .
TRENDS IN GENETICS, 2003, 19 (02) :60-62