Quantum Liouville theory and BTZ black hole entropy

被引:20
作者
Chen, YJ [1 ]
机构
[1] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA
关键词
D O I
10.1088/0264-9381/21/4/028
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper I give an explicit conformal field theory description of (2 + 1)dimensional BTZ black hole entropy. In the boundary Liouville field theory I investigate the reducible Verma modules in the elliptic sector, which correspond to certain irreducible representations of the quantum algebra U-q(sl(2))circle dotU((q) over cap)(sl(2)). I show that there are states that decouple from these reducible Verma modules in a similar fashion to the decoupling of null states in minimal models. Because of the nonstandard form of the Ward identity for the two-point correlation functions in quantum Liouville field theory, these decoupling states have positive-definite norms. The explicit counting from these states gives the desired Bekenstein-Hawking entropy in the semi-classical limit when q is a root of unity of odd order.
引用
收藏
页码:1153 / 1180
页数:28
相关论文
共 78 条
[1]   A CHERN-SIMONS ACTION FOR 3-DIMENSIONAL ANTI-DESITTER SUPERGRAVITY THEORIES [J].
ACHUCARRO, A ;
TOWNSEND, PK .
PHYSICS LETTERS B, 1986, 180 (1-2) :89-92
[2]  
[Anonymous], 1915, ACTA MATH-DJURSHOLM, DOI DOI 10.1007/BF02418539
[3]   Near-horizon geometry and black holes in four dimensions [J].
Balasubramanian, V ;
Larsen, F .
NUCLEAR PHYSICS B, 1998, 528 (1-2) :229-237
[4]   GLOBAL CHARGES IN CHERN-SIMONS THEORY AND THE 2+1-BLACK-HOLE [J].
BANADOS, M .
PHYSICAL REVIEW D, 1995, 52 (10) :5816-5825
[5]   BLACK-HOLE IN 3-DIMENSIONAL SPACETIME [J].
BANADOS, M ;
TEITELBOIM, C ;
ZANELLI, J .
PHYSICAL REVIEW LETTERS, 1992, 69 (13) :1849-1851
[6]  
BANADOS M, 1999, HEPTH9901148
[7]  
Baxter R J., 1982, EXACTLY SOLVED MODEL
[8]   PARTITION-FUNCTION OF 8-VERTEX LATTICE MODEL [J].
BAXTER, RJ .
ANNALS OF PHYSICS, 1972, 70 (01) :193-&
[9]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[10]   Entropy of three-dimensional black holes in string theory [J].
Birmingham, D ;
Sachs, I ;
Sen, S .
PHYSICS LETTERS B, 1998, 424 (3-4) :275-280