Quantum Liouville theory and BTZ black hole entropy

被引:20
作者
Chen, YJ [1 ]
机构
[1] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA
关键词
D O I
10.1088/0264-9381/21/4/028
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper I give an explicit conformal field theory description of (2 + 1)dimensional BTZ black hole entropy. In the boundary Liouville field theory I investigate the reducible Verma modules in the elliptic sector, which correspond to certain irreducible representations of the quantum algebra U-q(sl(2))circle dotU((q) over cap)(sl(2)). I show that there are states that decouple from these reducible Verma modules in a similar fashion to the decoupling of null states in minimal models. Because of the nonstandard form of the Ward identity for the two-point correlation functions in quantum Liouville field theory, these decoupling states have positive-definite norms. The explicit counting from these states gives the desired Bekenstein-Hawking entropy in the semi-classical limit when q is a root of unity of odd order.
引用
收藏
页码:1153 / 1180
页数:28
相关论文
共 78 条
[51]  
LEE HW, 1998, HEPTH9804095
[52]  
LIOUVILLE J, 1879, J MATH PURE APPL, V18, P71
[53]   THE CLOSED STRING GERVAIS-NEVEU LIOUVILLE THEORY [J].
LUST, D ;
SCHNITTGER, J .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1991, 6 (20) :3625-3641
[54]   ON A FORMULATION OF POLYAKOV STRING THEORY WITH REGULAR CLASSICAL-SOLUTIONS [J].
ONOFRI, E ;
VIRASORO, MA .
NUCLEAR PHYSICS B, 1982, 201 (01) :159-175
[55]  
Picard E, 1905, J REINE ANGEW MATH, V130, P243
[56]  
Picard E., 1893, J MATH PURE APPL, V9, P273
[57]   ABELIAN CHERN-SIMONS THEORIES IN 2+1 DIMENSIONS [J].
POLYCHRONAKOS, AP .
ANNALS OF PHYSICS, 1990, 203 (02) :231-254
[58]   ON THE QUANTIZATION OF THE COEFFICIENT OF THE ABELIAN CHERN-SIMONS TERM [J].
POLYCHRONAKOS, AP .
PHYSICS LETTERS B, 1990, 241 (01) :37-40
[59]   QUASITRIANGULARITY OF QUANTUM GROUPS AT ROOTS OF 1 [J].
RESHETIKHIN, N .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 170 (01) :79-99
[60]   Uniqueness of the asymptotic AdS3 geometry [J].
Rooman, M ;
Spindel, P .
CLASSICAL AND QUANTUM GRAVITY, 2001, 18 (11) :2117-2123