We discuss the issue of screening and confinement of external color charges in bosonized two-dimensional quantum chromodynamics. Our computation relies on the static solutions of the semiclassical equations of motion. We consider the problem with fermions in the fundamental representation, as well as arbitrary products thereof, from which the case of adjoint representation may be obtained by suitable constraints in the massless case. The mass term is treated perturbatively. Under these assumptions, we arrive at the conclusion that, in the cases considered so far (fermions in the fundamental representation or arbitrary numbers of copies thereof) screening seems to prevail. Indeed, we found no solution compatible to confinement. To confirm this result further, we outline the construction of operators corresponding to screened quarks.