Plasmon Resonance Energy Transfer (PRET)-based Molecular Imaging of Cytochrome c in Living Cells

被引:163
作者
Choi, Yeonho [1 ]
Kang, Taewook [2 ]
Lee, Luke P. [1 ]
机构
[1] Univ Calif Berkeley, Biomol Nanotechnol Ctr, Berkeley Sensor & Actuator Ctr, Dept Bioengn, Berkeley, CA 94720 USA
[2] Sogang Univ, Dept Chem & Biomol Engn, Seoul 121742, South Korea
关键词
FLUORESCENT PROTEIN; QUANTUM DOTS; ACTIVATION; EXPRESSION; APOPTOSIS;
D O I
10.1021/nl802511z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We describe the development of innovative plasmon resonance energy transfer (PRET)-based molecular imaging of biomolecules in living cells. Our strategy of in vivo PRET imaging relies on the resonant plasmonic energy transfer from a gold nanoplasmonic probe to conjugated target molecules, which creates "quantized quenching dips" within the Rayleigh scattering spectrum of the probe. The positions of these quantized quenching dips exactly match with the absorption peaks of the target molecule since we intentionally design nanoantennas (i.e., nanoplasmonic probes) to overlap the electronic dipoles of the molecule and the plasmonic resonance dipole of nanoantennas. Such the quenching dips allow quantitative and long-term dynamic imaging of the target molecule without the drawbacks of photobleaching and blinking inherent to fluorescent markers, which cannot provide chemical fingerprints. Compared with other imaging methods, our PRET spectroscopic imaging method allows us to generate nanoscale specific wavelengths of local light sources in living systems via nanoantennas and transmit back the nanospectroscopic imaging data of biochemical activities in living cells. As a first demonstration of in vivo PRET imaging, we performed a visualization of the dynamics of intracellular cytochrome c in HepG2 cells under ethanol-induced apoptosis.
引用
收藏
页码:85 / 90
页数:6
相关论文
共 28 条
[1]   Facial control of nanoparticle binding to cytochrome c [J].
Bayraktar, Halil ;
You, Chang-Cheng ;
Rotello, Vincent M. ;
Knapp, Michael J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (10) :2732-+
[2]   Semiconductor nanocrystals as fluorescent biological labels [J].
Bruchez, M ;
Moronne, M ;
Gin, P ;
Weiss, S ;
Alivisatos, AP .
SCIENCE, 1998, 281 (5385) :2013-2016
[3]   Stochastic protein expression in individual cells at the single molecule level [J].
Cai, L ;
Friedman, N ;
Xie, XS .
NATURE, 2006, 440 (7082) :358-362
[4]   Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J].
Chan, WCW ;
Nie, SM .
SCIENCE, 1998, 281 (5385) :2016-2018
[5]   A tautomeric zinc sensor for ratiometric fluorescence imaging: Application to nitric oxide-induced release of intracellular zinc [J].
Chang, CJ ;
Jaworski, J ;
Nolan, EM ;
Sheng, M ;
Lippard, SJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (05) :1129-1134
[6]   Single metallic nanoparticle imaging for protein detection in cells [J].
Cognet, L ;
Tardin, C ;
Boyer, D ;
Choquet, D ;
Tamarat, P ;
Lounis, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (20) :11350-11355
[7]   Tracking individual kinesin motors in living cells using single quantum-dot imaging [J].
Courty, Sebastien ;
Luccardini, Camilla ;
Bellaiche, Yohanns ;
Cappello, Giovanni ;
Dahan, Maxime .
NANO LETTERS, 2006, 6 (07) :1491-1495
[8]   Novel fluorescent protein from Discosoma coral and its mutants possesses a unique far-red fluorescence [J].
Fradkov, AF ;
Chen, Y ;
Ding, L ;
Barsova, EV ;
Matz, MV ;
Lukyanov, SA .
FEBS LETTERS, 2000, 479 (03) :127-130
[9]   A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors [J].
Hardman, R .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2006, 114 (02) :165-172
[10]   Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods [J].
Huang, XH ;
El-Sayed, IH ;
Qian, W ;
El-Sayed, MA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (06) :2115-2120