The superlattice model of lateral organization of membranes and its implications on membrane lipid homeostasis

被引:47
作者
Somerharju, Pentti [1 ]
Virtanen, Jorma A. [2 ]
Cheng, Kwan H. [3 ]
Hermansson, Martin [1 ]
机构
[1] Univ Helsinki, Inst Biomed, Dept Med Biochem, FIN-00014 Helsinki, Finland
[2] Univ Jyvaskyla, NanoSci Ctr, Dept Chem, SF-40351 Jyvaskyla, Finland
[3] Texas Tech Univ, Dept Phys, Lubbock, TX 79409 USA
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES | 2009年 / 1788卷 / 01期
关键词
Cholesterol; Distribution; Domain; Erythrocyte; Model; Molecular dynamics; Phospholipase; Phospholipid; CTP-PHOSPHOCHOLINE CYTIDYLYLTRANSFERASE; SATURATED FATTY-ACIDS; PHOSPHATIDYLCHOLINE BILAYERS; REGULAR DISTRIBUTION; CHOLESTEROL SUPERLATTICES; PHASE-TRANSITIONS; DOMAIN FORMATION; CONDENSED COMPLEXES; MAXIMUM SOLUBILITY; BINARY-MIXTURES;
D O I
10.1016/j.bbamem.2008.10.004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Most biological membranes are extremely complex structures consisting of hundreds of different lipid and protein molecules. According to the famous fluid-mosaic model lipids and many proteins are free to diffuse very rapidly in the plane of the membrane. While such fast diffusion implies that different membrane lipids would be laterally randomly distributed, accumulating evidence indicates that in model and natural membranes the lipid components tend to adopt regular (superlattice-like) distributions. The superlattice model, put forward based on such evidence, is intriguing because it predicts that 1) there is a limited number of allowed compositions representing local minima in membrane free energy and 2) those energy minima could provide set-points for enzymes regulating membrane lipid compositions. Furthermore, the existence of a discrete number of allowed compositions could help to maintain organelle identity in the face of rapid inter-organelle membrane traffic. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:12 / 23
页数:12
相关论文
共 122 条
[51]   Ceramide induces structural defects into phosphatidylcholine bilayers and activates phospholipase A(2) [J].
Huang, HW ;
Goldberg, EM ;
Zidovetzki, R .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1996, 220 (03) :834-838
[52]   Exploration of molecular interactions in cholesterol superlattices: Effect of multibody interactions [J].
Huang, JY .
BIOPHYSICAL JOURNAL, 2002, 83 (02) :1014-1025
[53]   A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers [J].
Huang, JY ;
Feigenson, GW .
BIOPHYSICAL JOURNAL, 1999, 76 (04) :2142-2157
[54]   Maximum solubility of cholesterol in phosphatidylcholine and phosphatidylethanolamine bilayers [J].
Huang, JY ;
Buboltz, JT ;
Feigenson, GW .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 1999, 1417 (01) :89-100
[55]   Membrane-containing viruses with icosahedrally symmetric capsids [J].
Huiskonen, Juha T. ;
Butcher, Sarah J. .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2007, 17 (02) :229-236
[56]   ORGANIZATION AND INTERACTION OF CHOLESTEROL AND PHOSPHATIDYLCHOLINE IN MODEL BILAYER-MEMBRANES [J].
HYSLOP, PA ;
MOREL, B ;
SAUERHEBER, RD .
BIOCHEMISTRY, 1990, 29 (04) :1025-1038
[57]   MODEL FOR PACKING OF LIPIDS IN BILAYER MEMBRANES [J].
ISRAELACHVILI, JN ;
MITCHELL, DJ .
BIOCHIMICA ET BIOPHYSICA ACTA, 1975, 389 (01) :13-19
[58]   Lipid rafts: at a crossroad between cell biology and physics [J].
Jacobson, Ken ;
Mouritsen, Ole G. ;
Anderson, Richard G. W. .
NATURE CELL BIOLOGY, 2007, 9 (01) :7-14
[59]  
Jain M K, 1977, Adv Lipid Res, V15, P1
[60]   Electrospray lonization mass spectrometry and exogenous heavy isotope-labeled lipid species provide detailed information on aminophospholipid acyl chain remodeling [J].
Kainu, Ville ;
Hermansson, Martin ;
Somerharju, Pentti .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (06) :3676-3687