From Ontology to Semantic Similarity: Calculation of Ontology-Based Semantic Similarity

被引:60
作者
Gan, Mingxin [1 ]
Dou, Xue [1 ]
Jiang, Rui [2 ]
机构
[1] Univ Sci & Technol Beijing, Dongling Sch Econ & Management, Beijing 100083, Peoples R China
[2] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
来源
SCIENTIFIC WORLD JOURNAL | 2013年
基金
中国国家自然科学基金;
关键词
GENE-EXPRESSION; ENTITY CLASSES; R PACKAGE; INFERENCE; DATABASE; NETWORK; TOOL;
D O I
10.1155/2013/793091
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Advances in high-throughput experimental techniques in the past decade have enabled the explosive increase of omics data, while effective organization, interpretation, and exchange of these data require standard and controlled vocabularies in the domain of biological and biomedical studies. Ontologies, as abstract description systems for domain-specific knowledge composition, hence receive more and more attention in computational biology and bioinformatics. Particularly, many applications relying on domain ontologies require quantitative measures of relationships between terms in the ontologies, making it indispensable to develop computational methods for the derivation of ontology-based semantic similarity between terms. Nevertheless, with a variety of methods available, how to choose a suitable method for a specific application becomes a problem. With this understanding, we review a majority of existing methods that rely on ontologies to calculate semantic similarity between terms. We classify existing methods into five categories: methods based on semantic distance, methods based on information content, methods based on properties of terms, methods based on ontology hierarchy, and hybrid methods. We summarize characteristics of each category, with emphasis on basic notions, advantages and disadvantages of these methods. Further, we extend our review to software tools implementing these methods and applications using these methods.
引用
收藏
页数:11
相关论文
共 54 条
[1]   Mass spectrometry-based proteomics [J].
Aebersold, R ;
Mann, M .
NATURE, 2003, 422 (6928) :198-207
[2]  
ALMUBAID H, 2006, P 28 ANN INT C IEEE, V1, P2713
[3]  
[Anonymous], 1997, P 10 RES COMPUTATION
[4]  
[Anonymous], 1998, WORDNET ELECT LEXICA
[5]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[6]  
Bodenreider O, 2005, PACIFIC SYMPOSIUM ON BIOCOMPUTING 2005, P91
[7]   FishNet: an online database of zebrafish anatomy [J].
Bryson-Richardson, Robert J. ;
Berger, Silke ;
Schilling, Thomas F. ;
Hall, Thomas E. ;
Cole, Nicholas J. ;
Gibson, Abigail J. ;
Sharpe, James ;
Currie, Peter D. .
BMC BIOLOGY, 2007, 5 (1)
[8]  
Couto F.M., 2005, P 14 ACM INT C INFOR, P343, DOI DOI 10.1145/1099554.1099658
[9]   ChEBI:: a database and ontology for chemical entities of biological interest [J].
Degtyarenko, Kirill ;
de Matos, Paula ;
Ennis, Marcus ;
Hastings, Janna ;
Zbinden, Martin ;
McNaught, Alan ;
Alcantara, Rafael ;
Darsow, Michael ;
Guedj, Mickael ;
Ashburner, Michael .
NUCLEIC ACIDS RESEARCH, 2008, 36 :D344-D350
[10]   Bioconductor: open software development for computational biology and bioinformatics [J].
Gentleman, RC ;
Carey, VJ ;
Bates, DM ;
Bolstad, B ;
Dettling, M ;
Dudoit, S ;
Ellis, B ;
Gautier, L ;
Ge, YC ;
Gentry, J ;
Hornik, K ;
Hothorn, T ;
Huber, W ;
Iacus, S ;
Irizarry, R ;
Leisch, F ;
Li, C ;
Maechler, M ;
Rossini, AJ ;
Sawitzki, G ;
Smith, C ;
Smyth, G ;
Tierney, L ;
Yang, JYH ;
Zhang, JH .
GENOME BIOLOGY, 2004, 5 (10)