Charge Storage Capacity of Renewable Biopolymer/Conjugated Polymer Interpenetrating Networks Enhanced by Electroactive Dopants

被引:69
作者
Nagaraju, D. H. [1 ]
Rebis, Tomasz [2 ]
Gabrielsson, Roger [3 ]
Elfwing, Anders [1 ]
Milczarek, Grzegorz [2 ]
Inganaes, Olle [1 ]
机构
[1] Linkoping Univ, Biomol & Organ Elect IFM, S-58183 Linkoping, Sweden
[2] Poznan Univ Tech, Inst Chem & Tech Electrochem, PL-60965 Poznan, Poland
[3] Linkoping Univ, Dept Phys Chem & Biol, IFM, S-58183 Linkoping, Sweden
关键词
CONDUCTING POLYMER; ELECTROCHEMICAL CAPACITORS; MODIFIED ELECTRODE; SUPERCAPACITORS; CARBON; ENERGY; POLYANILINE; PERFORMANCE; BATTERIES; CELLULOSE;
D O I
10.1002/aenm.201300443
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Renewable materials are requested for large scale electrical storage, a coming necessity with the growth of intermittent solar and wind renewable electricity generation. Biopolymers are a source of inexpensive materials, in particular through the use of black liquor from paper production, a waste product. Interpenetrating networks of the biopolymer lignosulfonate (Lig) and conjugated polymer polypyrrole (Ppy) are synthesized by galvanostatic polymerization from pyrrole/lignosulfonate mixture in acidic aqueous electrolyte. Methoxy and phenolic functional group present in the non-conducting lignosulfonate are converted to quinone groups. The redox chemistry of quinones is used for charge storage, along with charge storage in polypyrrole. A large variation of the electrochemical activity between lignosulfonates obtained from different sources is observed. The charge storage capacities are significantly enhanced by also including another electroactive dopant, anthraquinone sulfonate (AQS). AQS redox peaks act as an internal reference (standard) to probe the redox electrochemistry of Lig. The synthesized Ppy(Lig) and Ppy(Lig-AQS) electrodes are characterized by cyclic voltammetry, galvanostatic charge-discharge cycling, electrochemical quartz crystal microbalance, and atomic force microscopy.
引用
收藏
页数:7
相关论文
共 51 条
[1]  
[Anonymous], 2010, ADV CHEM SER
[2]  
[Anonymous], 1999, ELECTROCHEMICAL SUPE
[3]   Ultracapacitors: why, how, and where is the technology [J].
Burke, A .
JOURNAL OF POWER SOURCES, 2000, 91 (01) :37-50
[4]   Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors [J].
Chmiola, John ;
Largeot, Celine ;
Taberna, Pierre-Louis ;
Simon, Patrice ;
Gogotsi, Yury .
SCIENCE, 2010, 328 (5977) :480-483
[5]   Stepwise Nanopore Evolution in One-Dimensional Nanostructures [J].
Choi, Jang Wook ;
McDonough, James ;
Jeong, Sangmoo ;
Yoo, Jee Soo ;
Chan, Candace K. ;
Cui, Yi .
NANO LETTERS, 2010, 10 (04) :1409-1413
[6]   Carbon nanofiber and PEDOT-PSS bilayer systems as electrodes for symmetric and asymmetric electrochemical capacitor cells [J].
Cuentas Gallegos, Ana Karina ;
Rincon, Marina E. .
JOURNAL OF POWER SOURCES, 2006, 162 (01) :743-747
[7]   High electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon monolith as a support [J].
Fan, Li-Zhen ;
Hu, Yong-Sheng ;
Maier, Joachim ;
Adelhelm, Philipp ;
Smarsly, Bernd ;
Antonietti, Markus .
ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (16) :3083-3087
[8]   Supercapacitors based on conducting polymers/nanotubes composites [J].
Frackowiak, E ;
Khomenko, V ;
Jurewicz, K ;
Lota, K ;
Béguin, F .
JOURNAL OF POWER SOURCES, 2006, 153 (02) :413-418
[9]   Carbon materials for the electrochemical storage of energy in capacitors [J].
Frackowiak, E ;
Béguin, F .
CARBON, 2001, 39 (06) :937-950
[10]   Electrochemical characterization of polyaniline in nonaqueous electrolyte and its evaluation as electrode material for electrochemical supercapacitors [J].
Fusalba, F ;
Gouérec, P ;
Villers, D ;
Bélanger, D .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (01) :A1-A6