Importance of translation and nonnucleolytic ago proteins for on-target RNA interference

被引:65
作者
Wu, Ligang [1 ,2 ]
Fan, Jihua [1 ]
Belasco, Joel G. [1 ,2 ]
机构
[1] New York Univ, Sch Med, Kimmel Ctr Biol & Med, Skirball Inst, New York, NY 10016 USA
[2] New York Univ, Sch Med, Dept Microbiol, New York, NY 10016 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1016/j.cub.2008.07.072
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In animals, both siRNAs and miRNAs are thought to diminish protein synthesis from transcripts that are perfectly complementary by directing endonucleolytic cleavage where they anneal, thereby triggering rapid degradation of the entire message [1-4]. By contrast, partially complementary messages are downregulated by a combination of translational repression and accelerated decay caused by rapid poly(A) tail removal [3, 5-12]. Here we present evidence that translational repression can also make a substantial contribution to the downregulation of fully complementary messages by RNA interference. Unlike mRNA destabilization, this inhibitory effect on translation is greater for perfectly complementary elements located in the 3' untranslated region rather than in the protein-coding region. In addition to known disparities in their endonucleolytic activity [13, 14], the four Ago proteins with which siRNAs associate in humans differ significantly in their capacity to direct translational repression. As a result, the relative effect of sIRNA on targets that are fully versus partially complementary is influenced by the comparative abundance of the three nonnucleolytic Ago proteins, causing this on-target/off-target ratio to vary in a cell-type-dependent manner because of the dissimilar tissue distribution of these proteins. These findings have important implications for the efficacy and specificity of RNA interference.
引用
收藏
页码:1327 / 1332
页数:6
相关论文
共 24 条
[1]   Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation [J].
Bagga, S ;
Bracht, J ;
Hunter, S ;
Massirer, K ;
Holtz, J ;
Eachus, R ;
Pasquinelli, AE .
CELL, 2005, 122 (04) :553-563
[2]  
Baron-Benhamou Julie, 2004, Methods Mol Biol, V257, P135, DOI 10.1385/1-59259-750-5:135
[3]   siRNAs can function as miRNAs [J].
Doench, JG ;
Petersen, CP ;
Sharp, PA .
GENES & DEVELOPMENT, 2003, 17 (04) :438-442
[4]   Drosophila microRNAs are sorted into functionally distinct argonaute complexes after production by Dicer-1 [J].
Foerstemann, Klaus ;
Horwich, Michael D. ;
Wee, LiangMeng ;
Tomari, Yukihide ;
Zamore, Phillip D. .
CELL, 2007, 130 (02) :287-297
[5]   Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs [J].
Giraldez, AJ ;
Mishima, Y ;
Rihel, J ;
Grocock, RJ ;
Van Dongen, S ;
Inoue, K ;
Enright, AJ ;
Schier, AF .
SCIENCE, 2006, 312 (5770) :75-79
[6]   A microRNA in a multiple-turnover RNAi enzyme complex [J].
Hutvágner, G ;
Zamore, PD .
SCIENCE, 2002, 297 (5589) :2056-2060
[7]   Expression profiling reveals off-target gene regulation by RNAi [J].
Jackson, AL ;
Bartz, SR ;
Schelter, J ;
Kobayashi, SV ;
Burchard, J ;
Mao, M ;
Li, B ;
Cavet, G ;
Linsley, PS .
NATURE BIOTECHNOLOGY, 2003, 21 (06) :635-637
[8]   An mRNA m7G cap binding-like motif within human Ago2 represses translation [J].
Kiriakidou, Marianthi ;
Tan, Grace S. ;
Lamprinaki, Styliani ;
De Planell-Saguer, Mariangels ;
Nelson, Peter T. ;
Mourelatos, Zissimos .
CELL, 2007, 129 (06) :1141-1151
[9]   THE C-ELEGANS HETEROCHRONIC GENE LIN-4 ENCODES SMALL RNAS WITH ANTISENSE COMPLEMENTARITY TO LIN-14 [J].
LEE, RC ;
FEINBAUM, RL ;
AMBROS, V .
CELL, 1993, 75 (05) :843-854
[10]   Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs [J].
Lim, LP ;
Lau, NC ;
Garrett-Engele, P ;
Grimson, A ;
Schelter, JM ;
Castle, J ;
Bartel, DP ;
Linsley, PS ;
Johnson, JM .
NATURE, 2005, 433 (7027) :769-773