Is there a bias in proteome research?

被引:160
作者
Mrowka, R [1 ]
Patzak, A
Herzel, H
机构
[1] Humboldt Univ, Johannes Muller Inst Physiol, Berlin, Germany
[2] Humboldt Univ, Innovat Kolleg Theoret Biol, Berlin, Germany
关键词
D O I
10.1101/gr.206701
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Advances in technology have enabled us to take a fresh look at data acquired by traditional single experiments and to compare them with genomewide data. The differences can be tremendous, as we show here, in the field of proteomics. We have compared data sets of protein-protein interactions in Saccharomyces cerevisiae that were detected by an identical underlying technical method, the yeast two-hybrid system. We found that the individually identified protein-protein interactions are considerably different from those identified by two genomewide scans. Interacting proteins in the pooled database from single publications are much more closely related to each other with respect to transcription profiles when compared to genomewide data. This difference may have been introduced by two factors: by a selection process in individual publications and by false positives in the whole-genome scans. If we assume that the differences are a result of false positives in the whole-genome data, the scans would contain 47%, 44%, and 91% of false positives for the UETZ, ITO-core, and ITO-full data, respectively. If, however, the true fraction of false positives is considerably lower than estimated here, the data from hypothesis-driven experiments must have been Subjected to a serious selection process.
引用
收藏
页码:1971 / 1973
页数:3
相关论文
共 9 条
[1]   A genome-wide transcriptional analysis of the mitotic cell cycle [J].
Cho, RJ ;
Campbell, MJ ;
Winzeler, EA ;
Steinmetz, L ;
Conway, A ;
Wodicka, L ;
Wolfsberg, TG ;
Gabrielian, AE ;
Landsman, D ;
Lockhart, DJ ;
Davis, RW .
MOLECULAR CELL, 1998, 2 (01) :65-73
[2]   The transcriptional program of sporulation in budding yeast [J].
Chu, S ;
DeRisi, J ;
Eisen, M ;
Mulholland, J ;
Botstein, D ;
Brown, PO ;
Herskowitz, I .
SCIENCE, 1998, 282 (5389) :699-705
[3]   A NOVEL GENETIC SYSTEM TO DETECT PROTEIN PROTEIN INTERACTIONS [J].
FIELDS, S ;
SONG, OK .
NATURE, 1989, 340 (6230) :245-246
[4]   A comprehensive two-hybrid analysis to explore the yeast protein interactome [J].
Ito, T ;
Chiba, T ;
Ozawa, R ;
Yoshida, M ;
Hattori, M ;
Sakaki, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (08) :4569-4574
[5]   Genomics, gene expression and DNA arrays [J].
Lockhart, DJ ;
Winzeler, EA .
NATURE, 2000, 405 (6788) :827-836
[6]   A combined algorithm for genome-wide prediction of protein function [J].
Marcotte, EM ;
Pellegrini, M ;
Thompson, MJ ;
Yeates, TO ;
Eisenberg, D .
NATURE, 1999, 402 (6757) :83-86
[7]   MIPS:: a database for genomes and protein sequences [J].
Mewes, HW ;
Frishman, D ;
Gruber, C ;
Geier, B ;
Haase, D ;
Kaps, A ;
Lemcke, K ;
Mannhaupt, G ;
Pfeiffer, F ;
Schüller, C ;
Stocker, S ;
Weil, B .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :37-40
[8]   Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles [J].
Roberts, CJ ;
Nelson, B ;
Marton, MJ ;
Stoughton, R ;
Meyer, MR ;
Bennett, HA ;
He, YDD ;
Dai, HY ;
Walker, WL ;
Hughes, TR ;
Tyers, M ;
Boone, C ;
Friend, SH .
SCIENCE, 2000, 287 (5454) :873-880
[9]   A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae [J].
Uetz, P ;
Giot, L ;
Cagney, G ;
Mansfield, TA ;
Judson, RS ;
Knight, JR ;
Lockshon, D ;
Narayan, V ;
Srinivasan, M ;
Pochart, P ;
Qureshi-Emili, A ;
Li, Y ;
Godwin, B ;
Conover, D ;
Kalbfleisch, T ;
Vijayadamodar, G ;
Yang, MJ ;
Johnston, M ;
Fields, S ;
Rothberg, JM .
NATURE, 2000, 403 (6770) :623-627