Alzheimer disease-specific conformation of hyperphosphorylated paired helical filament-tau is polyubiquitinated through Lys-48, Lys-11, and Lys-6 ubiquitin conjugation

被引:234
作者
Cripps, D
Thomas, SN
Jeng, Y
Yang, F
Davies, P
Yang, AJ
机构
[1] Univ So Calif, Sch Pharm, Dept Pharmaceut Sci, Los Angeles, CA 90089 USA
[2] Yeshiva Univ Albert Einstein Coll Med, Dept Pathol, Bronx, NY 10461 USA
[3] Yeshiva Univ Albert Einstein Coll Med, Dept Neurosci, Bronx, NY 10461 USA
[4] Micro Tech Sci Inc, Vista, CA 92081 USA
关键词
D O I
10.1074/jbc.M512786200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
One of the key pathological hallmarks of Alzheimer disease (AD) is the accumulation of paired helical filaments (PHFs) of hyperphosphorylated microtubule-associated protein Tau. Tandem mass spectrometry was employed to examine PHF-Tau post-translational modifications, in particular protein phosphorylation and ubiquitination, to shed light on their role in the early stages of Alzheimer disease. PHF-Tau from Alzheimer disease brain was affinity-purified by MC1 monoclonal antibody to isolate a soluble fraction of PHF-Tau in a conformation unique to human AD brain. A large number of phosphorylation sites were identified by employing a data-dependent neutral loss algorithm to trigger MS3 scans of phosphopeptides. It was found that soluble PHF-Tau is ubiquitinated at its microtubule-binding domain at residues Lys-254, Lys-311, and Lys-353, suggesting that ubiquitination of PHF-Tau may be an earlier pathological event than previously thought and that ubiquitination could play a regulatory role in modulating the integrity of microtubules during the course of AD. Tandem mass spectrometry data for ubiquitin itself indicate that PHF-Tau is modified by three polyubiquitin linkages, at Lys-6, Lys-11, and Lys-48. Relative quantitative analysis indicates that Lys-48-linked polyubiquitination is the primary form of polyubiquitination with a minor portion of ubiquitin linked at Lys-6 and Lys-11. Because modification by Lys-48-linked polyubiquitin chains is known to serve as the essential means of targeting proteins for degradation by the ubiquitin-proteasome system, and it has been reported that modification at Lys-6 inhibits ubiquitin-dependent protein degradation, a failure of the ubiquitin-proteasome system could play a role in initiating the formation of degradation-resistant PHF tangles.
引用
收藏
页码:10825 / 10838
页数:14
相关论文
共 58 条
[1]   MICROTUBULE-ASSOCIATED PROTEINS CONNECT MICROTUBULES AND NEUROFILAMENTS INVITRO [J].
AAMODT, EJ ;
WILLIAMS, RC .
BIOCHEMISTRY, 1984, 23 (25) :6023-6031
[2]   Hyperphosphorylation induces self-assembly of τ into tangles of paired helical filaments/straight filaments [J].
Alonso, AD ;
Zaidi, T ;
Novak, M ;
Grundke-Iqbal, I ;
Iqbal, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (12) :6923-6928
[3]   Tau dephosphorylation at tau-1 site correlates with its association to cell membrane [J].
Arrasate, M ;
Pérez, M ;
Avila, J .
NEUROCHEMICAL RESEARCH, 2000, 25 (01) :43-50
[4]   NEUROFIBRILLARY TANGLES BUT NOT SENILE PLAQUES PARALLEL DURATION AND SEVERITY OF ALZHEIMERS-DISEASE [J].
ARRIAGADA, PV ;
GROWDON, JH ;
HEDLEYWHYTE, ET ;
HYMAN, BT .
NEUROLOGY, 1992, 42 (03) :631-639
[5]   Role of tau protein in both physiological and pathological conditions [J].
Avila, J ;
Lucas, JJ ;
Pérez, M ;
Hernández, F .
PHYSIOLOGICAL REVIEWS, 2004, 84 (02) :361-384
[6]   ABNORMAL PHOSPHORYLATION OF TAU-PRECEDES UBIQUITINATION IN NEUROFIBRILLARY PATHOLOGY OF ALZHEIMER-DISEASE [J].
BANCHER, C ;
GRUNDKEIQBAL, I ;
IQBAL, K ;
FRIED, VA ;
SMITH, HT ;
WISNIEWSKI, HM .
BRAIN RESEARCH, 1991, 539 (01) :11-18
[7]   Toward a unified scheme for the aggregation of tau into Alzheimer paired helical filaments [J].
Barghorn, S ;
Mandelkow, E .
BIOCHEMISTRY, 2002, 41 (50) :14885-14896
[8]   Large-scale characterization of HeLa cell nuclear phosphoproteins [J].
Beausoleil, SA ;
Jedrychowski, M ;
Schwartz, D ;
Elias, JE ;
Villén, J ;
Li, JX ;
Cohn, MA ;
Cantley, LC ;
Gygi, SP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (33) :12130-12135
[9]   PHOSPHORYLATION OF SER(262) STRONGLY REDUCES BINDING OF TAU-PROTEIN TO MICROTUBULES - DISTINCTION BETWEEN PHF-LIKE IMMUNOREACTIVITY AND MICROTUBULE-BINDING [J].
BIERNAT, J ;
GUSTKE, N ;
DREWES, G ;
MANDELKOW, EM ;
MANDELKOW, E .
NEURON, 1993, 11 (01) :153-163
[10]   The development of cell processes induced by tau protein requires phosphorylation of serine 262 and 356 in the repeat domain and is inhibited by phosphorylation in the proline-rich domains [J].
Biernat, J ;
Mandelkow, EM .
MOLECULAR BIOLOGY OF THE CELL, 1999, 10 (03) :727-740