Molecular dynamics simulation of thermal conductivity of single-wall carbon nanotubes

被引:66
作者
Bi, KD [1 ]
Chen, YF
Yang, JK
Wang, YJ
Chen, MH
机构
[1] Southeast Univ, Dept Mech Engn, Nanjing 210096, Peoples R China
[2] Southeast Univ, Key Lab MEMS China Educ Minist, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
thermal conductivity; single-wall carbon nanotubes; molecular dynamics;
D O I
10.1016/j.physleta.2005.09.070
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Based on equilibrium molecular dynamics (EMD) simulation method, the thermal conductivity of single-wall carbon nanotubes (SWNTs) dependent on tube length and temperature is investigated. Nonequilibrium molecular dynamics (NEMD) simulations are also carried out as comparison at 1000 K. Through extrapolation to an infinite system size, the data from the NEMD method are in the same order of the simulated results calculated from the EMD model. The effects of isotopic atom and vacancy on the thermal conductivity of carbon nanotubes (CNTs) are also investigated from EMD simulation results. It is demonstrated that the vacancy scattering on phonons is stronger than the isotopic atom doing at the same concentration, which causes more reduction on lattice thermal conductivity of CNTs. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:150 / 153
页数:4
相关论文
共 26 条
[1]   Unusually high thermal conductivity of carbon nanotubes [J].
Berber, S ;
Kwon, YK ;
Tománek, D .
PHYSICAL REVIEW LETTERS, 2000, 84 (20) :4613-4616
[2]   EMPIRICAL POTENTIAL FOR HYDROCARBONS FOR USE IN SIMULATING THE CHEMICAL VAPOR-DEPOSITION OF DIAMOND FILMS [J].
BRENNER, DW .
PHYSICAL REVIEW B, 1990, 42 (15) :9458-9471
[3]   Thermal conductivity of diamond and related materials from molecular dynamics simulations [J].
Che, JW ;
Çagin, T ;
Deng, WQ ;
Goddard, WA .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (16) :6888-6900
[4]   Thermal conductivity of carbon nanotubes [J].
Che, JW ;
Çagin, T ;
Goddard, WA .
NANOTECHNOLOGY, 2000, 11 (02) :65-69
[5]   Generalized extended empirical bond-order dependent force fields including nonbond interactions [J].
Che, JW ;
Cagin, T ;
Goddard, WA .
THEORETICAL CHEMISTRY ACCOUNTS, 1999, 102 (1-6) :346-354
[6]   Dependence of workfunction on the geometries of single-walled carbon nanotubes [J].
Chen, CW ;
Lee, MH .
NANOTECHNOLOGY, 2004, 15 (05) :480-484
[7]   Pure carbon nanoscale devices: Nanotube heterojunctions [J].
Chico, L ;
Crespi, VH ;
Benedict, LX ;
Louie, SG ;
Cohen, ML .
PHYSICAL REVIEW LETTERS, 1996, 76 (06) :971-974
[8]   Hot carrier electroluminescence from a single carbon nanotube [J].
Freitag, M ;
Perebeinos, V ;
Chen, J ;
Stein, A ;
Tsang, JC ;
Misewich, JA ;
Martel, R ;
Avouris, P .
NANO LETTERS, 2004, 4 (06) :1063-1066
[9]   Atomic-scale computations of the lattice contribution to thermal conductivity of single-walled carbon nanotubes [J].
Grujicic, M ;
Cao, G ;
Gersten, B .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2004, 107 (02) :204-216
[10]   Thermal conductivity of single-walled carbon nanotubes [J].
Hone, J ;
Whitney, M ;
Zettl, A .
SYNTHETIC METALS, 1999, 103 (1-3) :2498-2499