Impact of transport model errors on the global and regional methane emissions estimated by inverse modelling

被引:51
作者
Locatelli, R. [1 ]
Bousquet, P. [1 ]
Chevallier, F. [1 ]
Fortems-Cheney, A. [1 ]
Szopa, S. [1 ]
Saunois, M. [1 ]
Agusti-Panareda, A. [2 ]
Bergmann, D. [3 ]
Bian, H. [4 ]
Cameron-Smith, P. [3 ]
Chipperfield, M. P. [5 ]
Gloor, E. [5 ]
Houweling, S. [6 ,7 ]
Kawa, S. R. [4 ]
Krol, M. [6 ,7 ,8 ]
Patra, P. K. [9 ]
Prinn, R. G. [10 ]
Rigby, M. [10 ,11 ]
Saito, R. [9 ]
Wilson, C. [5 ]
机构
[1] LSCE UMR8212, Lab Sci Climat & Environm, Gif Sur Yvette, France
[2] European Ctr Medium Range Weather Forecasts, Reading RG2 9AX, Berks, England
[3] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94550 USA
[4] NASA, Goddard Space Flight Ctr, Goddard Earth Sci & Technol Ctr, Greenbelt, MD 20771 USA
[5] Univ Leeds, Sch Earth & Environm, Inst Climate & Atmospher Sci, Leeds LS2 9JT, W Yorkshire, England
[6] SRON Netherlands Inst Space Res, NL-3584 CA Utrecht, Netherlands
[7] Inst Marine & Atmospher Res Utrecht IMAU, NL-3584 CC Utrecht, Netherlands
[8] Univ Wageningen & Res Ctr, NL-6708 PB Wageningen, Netherlands
[9] Res Inst Global Change JAMSTEC, Yokohama, Kanagawa 2360001, Japan
[10] MIT, Ctr Global Change Sci, Cambridge, MA 02139 USA
[11] Univ Bristol, Sch Chem, Bristol BS8 1TS, Avon, England
关键词
ATMOSPHERIC METHANE; TRACER TRANSPORT; CO2; SOURCES; VERTICAL PROFILES; DATA ASSIMILATION; GROWTH-RATE; PART I; SCHEME; GASES; SINKS;
D O I
10.5194/acp-13-9917-2013
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A modelling experiment has been conceived to assess the impact of transport model errors on methane emissions estimated in an atmospheric inversion system. Synthetic methane observations, obtained from 10 different model outputs from the international TransCom-CH4 model inter-comparison exercise, are combined with a prior scenario of methane emissions and sinks, and integrated into the three-component PYVAR-LMDZ-SACS (PYthon VARiational-Laboratoire de Meteorologie Dynamique model with Zooming capability-Simplified Atmospheric Chemistry System) inversion system to produce 10 different methane emission estimates at the global scale for the year 2005. The same methane sinks, emissions and initial conditions have been applied to produce the 10 synthetic observation datasets. The same inversion set-up (statistical errors, prior emissions, inverse procedure) is then applied to derive flux estimates by inverse modelling. Consequently, only differences in the modelling of atmospheric transport may cause differences in the estimated fluxes. In our framework, we show that transport model errors lead to a discrepancy of 27 Tg yr(-1) at the global scale, representing 5% of total methane emissions. At continental and annual scales, transport model errors are proportionally larger than at the global scale, with errors ranging from 36 Tg yr(-1) in North America to 7 Tg yr(-1) in Boreal Eurasia (from 23 to 48 %, respectively). At the model grid-scale, the spread of inverse estimates can reach 150% of the prior flux. Therefore, transport model errors contribute significantly to overall uncertainties in emission estimates by inverse modelling, especially when small spatial scales are examined. Sensitivity tests have been carried out to estimate the impact of the measurement network and the advantage of higher horizontal resolution in transport models. The large differences found between methane flux estimates inferred in these different configurations highly question the consistency of transport model errors in current inverse systems. Future inversions should include more accurately prescribed observation covariances matrices in order to limit the impact of transport model errors on estimated methane fluxes.
引用
收藏
页码:9917 / 9937
页数:21
相关论文
共 96 条
[31]   Linking ozone pollution and climate change: The case for controlling methane [J].
Fiore, AM ;
Jacob, DJ ;
Field, BD ;
Streets, DG ;
Fernandes, SD ;
Jang, C .
GEOPHYSICAL RESEARCH LETTERS, 2002, 29 (19)
[32]   The Australian methane budget: Interpreting surface and train-borne measurements using a chemistry transport model [J].
Fraser, Annemarie ;
Miller, Christopher Chan ;
Palmer, Paul I. ;
Deutscher, Nicholas M. ;
Jones, Nicholas B. ;
Griffith, David W. T. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2011, 116
[33]   Comparing atmospheric transport models for future regional inversions over Europe -: Part 1:: mapping the atmospheric CO2 signals [J].
Geels, C. ;
Gloor, M. ;
Ciais, P. ;
Bousquet, P. ;
Peylin, P. ;
Vermeulen, A. T. ;
Dargaville, R. ;
Aalto, T. ;
Brandt, J. ;
Christensen, J. H. ;
Frohn, L. M. ;
Haszpra, L. ;
Karstens, U. ;
Roedenbeck, C. ;
Ramonet, M. ;
Carboni, G. ;
Santaguida, R. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2007, 7 (13) :3461-3479
[34]   Improvements in a half degree atmosphere/land version of the CCSM [J].
Gent, Peter R. ;
Yeager, Stephen G. ;
Neale, Richard B. ;
Levis, Samuel ;
Bailey, David A. .
CLIMATE DYNAMICS, 2010, 34 (06) :819-833
[35]   Vertical mixing in atmospheric tracer transport models:: error characterization and propagation [J].
Gerbig, C. ;
Koerner, S. ;
Lin, J. C. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2008, 8 (03) :591-602
[36]   A model-based evaluation of inversions of atmospheric transport, using annual mean mixing ratios, as a tool to monitor fluxes of nonreactive trace substances like CO2 on a continental scale [J].
Gloor, M ;
Fan, SM ;
Pacala, S ;
Sarmiento, J ;
Ramonet, M .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1999, 104 (D12) :14245-14260
[37]   Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models [J].
Gurney, KR ;
Law, RM ;
Denning, AS ;
Rayner, PJ ;
Baker, D ;
Bousquet, P ;
Bruhwiler, L ;
Chen, YH ;
Ciais, P ;
Fan, S ;
Fung, IY ;
Gloor, M ;
Heimann, M ;
Higuchi, K ;
John, J ;
Maki, T ;
Maksyutov, S ;
Masarie, K ;
Peylin, P ;
Prather, M ;
Pak, BC ;
Randerson, J ;
Sarmiento, J ;
Taguchi, S ;
Takahashi, T ;
Yuen, CW .
NATURE, 2002, 415 (6872) :626-630
[38]   An inverse modeling approach to investigate the global atmospheric methane cycle [J].
Hein, R ;
Crutzen, PJ ;
Heimann, M .
GLOBAL BIOGEOCHEMICAL CYCLES, 1997, 11 (01) :43-76
[39]  
HOLTSLAG AAM, 1991, J ATMOS SCI, V48, P1690, DOI 10.1175/1520-0469(1991)048<1690:EDACTI>2.0.CO
[40]  
2