机构:
Stanford Univ, Dept Stat, Stanford, CA 94305 USA
Stanford Univ, Dept Hlth Res & Policy, Stanford, CA 94305 USAStanford Univ, Dept Stat, Stanford, CA 94305 USA
Efron, Bradley
[1
,2
]
Tibshirani, Robert
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Stat, Stanford, CA 94305 USA
Stanford Univ, Dept Hlth Res & Policy, Stanford, CA 94305 USAStanford Univ, Dept Stat, Stanford, CA 94305 USA
Tibshirani, Robert
[1
,2
]
机构:
[1] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Hlth Res & Policy, Stanford, CA 94305 USA
Multiple testing;
gene set enrichment;
hypothesis testing;
D O I:
10.1214/07-AOAS101
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
This paper discusses the problem of identifying differentially expressed groups of genes from a microarray experiment. The groups of genes are externally defined, for example, sets of gene pathways derived from biological databases. Our starting point is the interesting, Gene Set Enrichment Analysis (GSEA) procedure of Subramanian et al. [Proc. Natl. Acad. Sci. USA 102 (2005) 15545-15550]. We Study the problem in some generality and propose two potential improvements to GSEA: the maxmean statistic for summarizing, gene-sets, and restandardization for more accurate inferences. We discuss a variety of examples and extensions, including the use of gene-set scores for predictions. We also describe a new R language package GSA that implements our ideas.