Evolutionary design on a budget: robustness and optimality of bacteriophage T7

被引:12
作者
You, L [1 ]
Yin, J
机构
[1] Duke Univ, Dept Biomed Engn, Durham, NC 27708 USA
[2] Duke Univ, Inst Genome Sci & Policy, Durham, NC 27708 USA
[3] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA
来源
IEE PROCEEDINGS SYSTEMS BIOLOGY | 2006年 / 153卷 / 02期
关键词
D O I
10.1049/ip-syb:20050026
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Exploring how biological systems have been 'designed' by evolution to achieve robust behaviours is now a subject of increasing research effort. Yet, it still remains unclear how environmental factors may contribute to this process. This issue is addressed by employing a detailed computer model for the intracellular growth of phage T7. More than 150 000 in silico T7 mutants were generated and the rates and efficiencies of their growth in two host environments, namely, a realistic environment that offered finite host resources for the synthesis of phage functions and a hypothetical environment where the phage Was Supplied infinite host resources, were evaluated. Results revealed two key properties of phage T7. First, T7 growth was overall robust with respect to perturbations in its parameters, but fragile with respect to changes in the ordering of its genetic elements. Secondly, the wild-type T7 had close to optimal fitness in the finite environment. Furthermore, a strong correlation was found between fitness and growth efficiency in the finite environment. The results underscore the potential importance of the environment in shaping robust design of a biological system. In particular, the strong correlation between fitness and growth efficiency suggests that T7 may have evolved to maximise its growth rate by minimising waste of finite resources.
引用
收藏
页码:46 / 52
页数:7
相关论文
共 50 条
[1]   Robustness in bacterial chemotaxis [J].
Alon, U ;
Surette, MG ;
Barkai, N ;
Leibler, S .
NATURE, 1999, 397 (6715) :168-171
[2]   Bioengineering models of cell signaling [J].
Asthagiri, AR ;
Lauffenburger, DA .
ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, 2000, 2 :31-53
[3]   Long-term monitoring of bacteria undergoing programmed population control in a microchemostat [J].
Balagaddé, FK ;
You, LC ;
Hansen, CL ;
Arnold, FH ;
Quake, SR .
SCIENCE, 2005, 309 (5731) :137-140
[4]   Robustness in simple biochemical networks [J].
Barkai, N ;
Leibler, S .
NATURE, 1997, 387 (6636) :913-917
[5]   Engineering stability in gene networks by autoregulation [J].
Becskei, A ;
Serrano, L .
NATURE, 2000, 405 (6786) :590-593
[6]   Highly optimized tolerance: Robustness and design in complex systems [J].
Carlson, JM ;
Doyle, J .
PHYSICAL REVIEW LETTERS, 2000, 84 (11) :2529-2532
[7]   Complexity and robustness [J].
Carlson, JM ;
Doyle, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 :2538-2545
[8]   Refactoring bacteriophage T7 [J].
Chan, Leon Y. ;
Kosuri, Sriram ;
Endy, Drew .
MOLECULAR SYSTEMS BIOLOGY, 2005, 1 (1) :2005.0018
[9]   Reverse engineering of biological complexity [J].
Csete, ME ;
Doyle, JC .
SCIENCE, 2002, 295 (5560) :1664-1669
[10]   SELFORGANIZATION OF MATTER AND EVOLUTION OF BIOLOGICAL MACROMOLECULES [J].
EIGEN, M .
NATURWISSENSCHAFTEN, 1971, 58 (10) :465-+