Mutational analysis of a type II thioesterase associated with nonribosomal peptide synthesis

被引:32
作者
Linne, U [1 ]
Schwarzer, D [1 ]
Schroeder, GN [1 ]
Marahiel, MA [1 ]
机构
[1] Univ Marburg, Fachbereich Chem Biochem, D-35032 Marburg, Germany
来源
EUROPEAN JOURNAL OF BIOCHEMISTRY | 2004年 / 271卷 / 08期
关键词
catalytic triad; fatty acid synthases; nonribosomal peptide synthesis; peptide synthetases; type II thioesterase polyketide synthases;
D O I
10.1111/j.1432-1033.2004.04063.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent studies on type II thioesterases (TEIIs) involved in microbial secondary metabolism described a role for these enzymes in the removal of short acyl-S- phosphopantetheine intermediates from misprimed holo-(acyl carrier proteins) and holo-(peptidyl carrier proteins) of polyketide synthases and nonribosomal peptide synthetases. Because of the absence of structural information on this class of enzymes, we performed a mutational analysis on a prototype TEII essential for efficient production of the lipopeptide antibiotic surfactin (TEIIsrf), which led to identification of catalytic and structural residues. On the basis of sequence alignment of 16 TEIIs, 10 single and one double mutant of highly conserved residues of TEIIsrf were constructed and biochemically investigated. We clearly identified a catalytic triad consisting of Ser86, Asp190 and His216, suggesting that TEIIsrf belongs to the alpha/beta-hydrolase superfamily. Exchange of these residues with residues with aliphatic side chains abolished enzyme activity, whereas replacement of the active-site Ser86 with cysteine produced an enzyme with marginally reduced activity. In contrast, exchange of the second strictly conserved asparagine (Asp163) with Ala resulted in an active but unstable enzyme, excluding a role for this residue in catalysis and suggesting a structural function. The results define three catalytic and at least one structural residue in a nonribosomal peptide synthetase TEII.
引用
收藏
页码:1536 / 1545
页数:10
相关论文
共 49 条
[1]   A complex multienzyme system encoded by five polyketide synthase genes is involved in the biosynthesis of the 26-membered polyene macrolide pimaricin in Streptomyces natalensis [J].
Aparicio, JF ;
Fouces, R ;
Mendes, MV ;
Olivera, N ;
Martín, JF .
CHEMISTRY & BIOLOGY, 2000, 7 (11) :895-905
[2]   Biosynthesis of the ansamycin antibiotic rifamycin: deductions from the molecular analysis of the rif biosynthetic gene cluster of Amycolatopsis mediterranei S699 [J].
August, PR ;
Tang, L ;
Yoon, YJ ;
Ning, S ;
Muller, R ;
Yu, TW ;
Taylor, M ;
Hoffmann, D ;
Kim, CG ;
Zhang, XH ;
Hutchinson, CR ;
Floss, HG .
CHEMISTRY & BIOLOGY, 1998, 5 (02) :69-79
[3]   Genetic organization of the yersiniabactin biosynthetic region and construction of avirulent mutants in Yersinia pestis [J].
Bearden, SW ;
Fetherston, JD ;
Perry, RD .
INFECTION AND IMMUNITY, 1997, 65 (05) :1659-1668
[4]   Biosynthesis of the polyene antifungal antibiotic nystatin in Streptomyces noursei ATCC 11455:: analysis of the gene cluster and deduction of the biosynthetic pathway [J].
Brautaset, T ;
Sekurova, ON ;
Sletta, H ;
Ellingsen, TE ;
Strom, AR ;
Valla, S ;
Zotchev, SB .
CHEMISTRY & BIOLOGY, 2000, 7 (06) :395-403
[5]   Structural basis for the cyclization of the lipopeptide antibiotic surfactin by the thioesterase domain SrfTE [J].
Bruner, SD ;
Weber, T ;
Kohli, RM ;
Schwarzer, D ;
Marahiel, MA ;
Walsh, CT ;
Stubbs, MT .
STRUCTURE, 2002, 10 (03) :301-310
[6]   CRYSTALLIZATION AND PRELIMINARY DIFFRACTION STUDIES OF THIOESTERASE-II FROM RAT MAMMARY-GLAND [J].
BUCHBINDER, JL ;
WITKOWSKI, A ;
SMITH, S ;
FLETTERICK, RJ .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1995, 22 (01) :73-75
[7]   Impact of thioesterase activity on tylosin biosynthesis in Streptomyces fradiae [J].
Butler, AR ;
Bate, N ;
Cundliffe, E .
CHEMISTRY & BIOLOGY, 1999, 6 (05) :287-292
[8]   The parallel and convergent universes of polyketide synthases and nonribosomal peptide synthetases [J].
Cane, DE ;
Walsh, CT .
CHEMISTRY & BIOLOGY, 1999, 6 (12) :R319-R325
[9]   SEQUENCE AND ANALYSIS OF THE GENETIC-LOCUS RESPONSIBLE FOR SURFACTIN SYNTHESIS IN BACILLUS-SUBTILIS [J].
COSMINA, P ;
RODRIGUEZ, F ;
DEFERRA, F ;
GRANDI, G ;
PEREGO, M ;
VENEMA, G ;
VANSINDEREN, D .
MOLECULAR MICROBIOLOGY, 1993, 8 (05) :821-831
[10]   Biochemical analysis of mutations in palmitoyl-protein thioesterase causing infantile and late-onset forms of neuronal ceroid lipofuscinosis [J].
Das, AK ;
Lu, JY ;
Hofmann, SL .
HUMAN MOLECULAR GENETICS, 2001, 10 (13) :1431-1439