Interpreting Expression Data with Metabolic Flux Models: Predicting Mycobacterium tuberculosis Mycolic Acid Production

被引:293
作者
Colijn, Caroline [1 ,3 ,5 ]
Brandes, Aaron [1 ]
Zucker, Jeremy [2 ]
Lun, Desmond S. [1 ,7 ,8 ]
Weiner, Brian [1 ]
Farhat, Maha R. [4 ]
Cheng, Tan-Yun [6 ]
Moody, D. Branch [6 ]
Murray, Megan [3 ]
Galagan, James E. [1 ,9 ,10 ]
机构
[1] Broad Inst MIT & Harvard, Cambridge, MA USA
[2] Harvard Univ, Sch Med, Dept Genet, Boston, MA USA
[3] Harvard Univ, Sch Publ Hlth, Dept Epidemiol, Boston, MA 02115 USA
[4] Massachusetts Gen Hosp, Dept Pulm & Crit Care Med, Boston, MA 02114 USA
[5] Univ Bristol, Dept Engn Math, Bristol, Avon, England
[6] Harvard Univ, Brigham & Womens Hosp, Sch Med, Boston, MA 02115 USA
[7] Univ S Australia, Phen & Bioinformat Res Ctr, Sch Math & Stat, Mawson Lakes, SA, Australia
[8] Univ S Australia, Australian Ctr Plant Funct Genom, Mawson Lakes, SA, Australia
[9] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
[10] Boston Univ, Dept Microbiol, Boston, MA 02215 USA
基金
比尔及梅琳达.盖茨基金会; 美国国家卫生研究院;
关键词
ESCHERICHIA-COLI; GENE-EXPRESSION; MESSENGER-RNA; SACCHAROMYCES-CEREVISIAE; DESULFOVIBRIO-VULGARIS; LIPID BIOSYNTHESIS; PROTEIN ABUNDANCE; BALANCE MODELS; GROWTH; DRUG;
D O I
10.1371/journal.pcbi.1000489
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Metabolism is central to cell physiology, and metabolic disturbances play a role in numerous disease states. Despite its importance, the ability to study metabolism at a global scale using genomic technologies is limited. In principle, complete genome sequences describe the range of metabolic reactions that are possible for an organism, but cannot quantitatively describe the behaviour of these reactions. We present a novel method for modeling metabolic states using whole cell measurements of gene expression. Our method, which we call E-Flux (as a combination of flux and expression), extends the technique of Flux Balance Analysis by modeling maximum flux constraints as a function of measured gene expression. In contrast to previous methods for metabolically interpreting gene expression data, E-Flux utilizes a model of the underlying metabolic network to directly predict changes in metabolic flux capacity. We applied E-Flux to Mycobacterium tuberculosis, the bacterium that causes tuberculosis (TB). Key components of mycobacterial cell walls are mycolic acids which are targets for several first-line TB drugs. We used E-Flux to predict the impact of 75 different drugs, drug combinations, and nutrient conditions on mycolic acid biosynthesis capacity in M. tuberculosis, using a public compendium of over 400 expression arrays. We tested our method using a model of mycolic acid biosynthesis as well as on a genome-scale model of M. tuberculosis metabolism. Our method correctly predicts seven of the eight known fatty acid inhibitors in this compendium and makes accurate predictions regarding the specificity of these compounds for fatty acid biosynthesis. Our method also predicts a number of additional potential modulators of TB mycolic acid biosynthesis. E-Flux thus provides a promising new approach for algorithmically predicting metabolic state from gene expression data.
引用
收藏
页数:14
相关论文
共 59 条
[51]   Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis [J].
Takayama, K ;
Wang, C ;
Besra, GS .
CLINICAL MICROBIOLOGY REVIEWS, 2005, 18 (01) :81-+
[52]   Mechanisms of action of isoniazid [J].
Timmins, Graham S. ;
Deretic, Vojo .
MOLECULAR MICROBIOLOGY, 2006, 62 (05) :1220-1227
[53]   STOICHIOMETRIC FLUX BALANCE MODELS QUANTITATIVELY PREDICT GROWTH AND METABOLIC BY-PRODUCT SECRETION IN WILD-TYPE ESCHERICHIA-COLI W3110 [J].
VARMA, A ;
PALSSON, BO .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1994, 60 (10) :3724-3731
[54]   Glutathione and growth inhibition of Mycobacterium tuberculosis in healthy and HIV infected subjects [J].
Venketaraman V. ;
Rodgers T. ;
Linares R. ;
Reilly N. ;
Swaminathan S. ;
Hom D. ;
Millman A.C. ;
Wallis R. ;
Connell N.D. .
AIDS Research and Therapy, 3 (1)
[55]   Protein pathway and complex clustering of correlated mRNA and protein expression analyses in Saccharomyces cerevisiae [J].
Washburn, MP ;
Koller, A ;
Oshiro, G ;
Ulaszek, RR ;
Plouffe, D ;
Deciu, C ;
Winzeler, E ;
Yates, JR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (06) :3107-3112
[56]   An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence [J].
Wayne, LG ;
Hayes, LG .
INFECTION AND IMMUNITY, 1996, 64 (06) :2062-2069
[57]   Just-in-time transcription program in metabolic pathways [J].
Zaslaver, A ;
Mayo, AE ;
Rosenberg, R ;
Bashkin, P ;
Sberro, H ;
Tsalyuk, M ;
Surette, MG ;
Alon, U .
NATURE GENETICS, 2004, 36 (05) :486-491
[58]  
Zhang Ying, 1993, Trends in Microbiology, V1, P109, DOI 10.1016/0966-842X(93)90117-A
[59]   Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FASI) of Mycobacterium tuberculosis [J].
Zimhony, O ;
Cox, JS ;
Welch, JT ;
Vilchèze, C ;
Jacobs, WR .
NATURE MEDICINE, 2000, 6 (09) :1043-1047