Extended fick-jacobs equation: Variational approach

被引:70
作者
Kalinay, P
Percus, JK
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[2] Slovak Acad Sci, Inst Phys, Bratislava 84511, Slovakia
[3] NYU, Dept Phys, New York, NY 10003 USA
来源
PHYSICAL REVIEW E | 2005年 / 72卷 / 06期
关键词
D O I
10.1103/PhysRevE.72.061203
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We derive an extended Fick-Jacobs equation for the diffusion of noninteracting particles in a two- and symmetric three-dimensional channels of varying cross section A(x), using a variational approach. The result is a diffusion differential equation of second order in only one space (longitudinal) coordinate. This equation is tested on the task of calculating the stationary flux through a hyperboloidal tube, and its solution is compared with that of other methods.
引用
收藏
页数:10
相关论文
共 8 条
[1]   Calculating the hopping times of confined fluids: Two hard disks in a box [J].
Bowles, RK ;
Mon, KK ;
Percus, JK .
JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (21) :10668-10673
[2]   DIFFUSION-COEFFICIENT FOR A BROWNIAN PARTICLE IN A PERIODIC FIELD OF FORCE .1. LARGE FRICTION LIMIT [J].
FESTA, R ;
DAGLIANO, EG .
PHYSICA A, 1978, 90 (02) :229-244
[3]  
Jacobs M. H., 1967, DIFFUSION PROCESSES
[4]   Projection of two-dimensional diffusion in a narrow channel onto the longitudinal dimension [J].
Kalinay, P ;
Percus, JK .
JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (20)
[5]  
KALINAY P, UNPUB
[6]  
Yudson VI, 2001, PHYS REV E, V64, DOI 10.1103/PhysRevE.64.031108
[7]   DIFFUSION PAST AN ENTROPY BARRIER [J].
ZWANZIG, R .
JOURNAL OF PHYSICAL CHEMISTRY, 1992, 96 (10) :3926-3930
[8]   EFFECTIVE DIFFUSION-COEFFICIENT FOR A BROWNIAN PARTICLE IN A TWO-DIMENSIONAL PERIODIC CHANNEL [J].
ZWANZIG, R .
PHYSICA A, 1983, 117 (01) :277-280