Piezoelectric nanofibers for energy scavenging applications

被引:385
作者
Chang, Jiyoung [1 ]
Domnner, Michael [1 ]
Chang, Chieh [1 ]
Lin, Liwei [1 ]
机构
[1] Univ Calif Berkeley, Dept Mech Engn, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
Nanogenerator; Energy harvesting; PVDF; Piezoelectric nanofibers; FERROELECTRIC PHASE CONTENT; POLY(VINYLIDENE FLUORIDE); POLYVINYLIDENE DIFLUORIDE; TITANATE NANOFIBERS; POLYMER NANOFIBERS; MECHANICAL ENERGY; NANOWIRE ARRAYS; ELECTROSPUN; NANOGENERATOR; POLYMORPHISM;
D O I
10.1016/j.nanoen.2012.02.003
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanofiber-based piezoelectric energy generators could be scalable power sources applicable in various electrical devices and systems by scavenging mechanical energy from the environment. This review article highlights recent advances in nanofiber nanogenerators, discusses their operation principles and addresses performance issues including energy conversion efficiencies and possible false artifacts during experimental characterizations. Piezoelectric nanogenerators made of PVDF (polyvinylidene fluoride) or PZT (lead zirconate titanate) and fabricated by means of electrospinning processes such as conventional, modified or near-field electrospinning (NFES) are the key focuses of this paper. Material and structural analyses on fabricated nanofibers using tools such as XRD (X-ray diffraction), FTIR (Fourier transform infrared), SHG (second harmonic generation), PFM (piezoresponse force microscopy) and Raman spectroscopy toward the fundamental characterizations of piezoelectric nanofibers are also described. We summarize the report by highlighting recent nanogenerator developments and future prospects including high power nanogenerators, energy storage/regulation systems and fundamentals on piezoelectricity. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:356 / 371
页数:16
相关论文
共 79 条
[21]  
Dotti F., 2007, J Ind Text, V37, P151, DOI [10.1177/1528083707078133, DOI 10.1177/1528083707078133]
[22]   Electrical power generator from randomly oriented electrospun poly(vinylidene fluoride) nanofibre membranes [J].
Fang, Jian ;
Wang, Xungai ;
Lin, Tong .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (30) :11088-11091
[23]   Permanent Polarity and Piezoelectricity of Electrospun α-Helical Poly(α-Amino Acid) Fibers [J].
Farrar, Dawnielle ;
Ren, Kailiang ;
Cheng, Derek ;
Kim, Sungjoo ;
Moon, Wonkyu ;
Wilson, William L. ;
West, James E. ;
Yu, S. Michael .
ADVANCED MATERIALS, 2011, 23 (34) :3954-+
[24]   Electrospun poly (3-hexylthiophene-2,5-diyl) fiber field effect transistor [J].
González, R ;
Pinto, NJ .
SYNTHETIC METALS, 2005, 151 (03) :275-278
[25]   Mechanical properties of a single electrospun fiber and its structures [J].
Gu, SY ;
Wu, QL ;
Ren, J ;
Vancso, GJ .
MACROMOLECULAR RAPID COMMUNICATIONS, 2005, 26 (09) :716-720
[26]  
Häusler E, 1984, FERROELECTRICS, V60, P277, DOI 10.1080/00150198408017528
[27]   Hybrid Nanogenerator for Concurrently Harvesting Biomechanical and Biochemical Energy [J].
Hansen, Benjamin J. ;
Liu, Ying ;
Yang, Rusen ;
Wang, Zhong Lin .
ACS NANO, 2010, 4 (07) :3647-3652
[28]   Replacing a Battery by a Nanogenerator with 20 V Output [J].
Hu, Youfan ;
Lin, Long ;
Zhang, Yan ;
Wang, Zhong Lin .
ADVANCED MATERIALS, 2012, 24 (01) :110-+
[29]   GaN Nanowire Arrays for High-Output Nanogenerators [J].
Huang, Chi-Te ;
Song, Jinhui ;
Lee, Wei-Fan ;
Ding, Yong ;
Gao, Zhiyuan ;
Hao, Yue ;
Chen, Lih-Juann ;
Wang, Zhong Lin .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (13) :4766-4771
[30]   Electrospinning of Polyvinylidene Difluoride with Carbon Nanotubes: Synergistic Effects of Extensional Force and Interfacial Interaction on Crystalline Structures [J].
Huang, Shu ;
Yee, Wu Aik ;
Tjiu, Wuiwui Chauhari ;
Liu, Ye ;
Kotaki, Masaya ;
Boey, Yin Chiang Freddy ;
Ma, Jan ;
Liu, Tianxi ;
Lu, Xuehong .
LANGMUIR, 2008, 24 (23) :13621-13626