Proteolytic degradation of Escherichia coli transcription activators SoxS and MarA as the mechanism for reversing the induction of the superoxide (SoxRS) and multiple antibiotic resistance (Mar) regulons

被引:124
作者
Griffith, KL [1 ]
Shah, IM [1 ]
Wolf, RE [1 ]
机构
[1] Univ Maryland Baltimore Cty, Dept Biol Sci, Baltimore, MD 21228 USA
关键词
D O I
10.1046/j.1365-2958.2003.03952.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In Escherichia coli, the SoxRS regulon confers resistance to redox-cycling compounds, and the Mar regulon provides a defence against multiple antibiotics. The response regulators, SoxS and MarA, are synthesized de novo in response to their inducing signals and directly activate transcription of a common set of target genes. Although the mechanisms of transcription activation by SoxS and MarA have been well studied, little is known about how the systems are shut-off once the inducing stress has subsided, except that de novo synthesis of the regulators is known to cease almost immediately. Here, we induced the SoxRS regulon and determined that, upon removal of the inducer, expression of the regulon's genes quickly returns to the preinduced level. This rapid shut-off indicates that the system is reset by an active process. We found that SoxS is unstable and infer that SoxS degradation is responsible for the rapid return of the system to the ground state upon removal of the inducing signal. We also found that MarA is unstable and that the instability of both proteins is intrinsic and unregulated. We used null mutations of protease genes to identify the proteases involved in the degradation of SoxS and MarA. Among single protease mutations, only lon mutations increased the half-life of SoxS and MarA. In addition, SoxS appeared to be nearly completely stable in a lon ftsH double mutant. Using hexahistidine tags placed at the respective ends of the activators, we found that access to the amino-terminus is essential for the proteolytic degradation.
引用
收藏
页码:1801 / 1816
页数:16
相关论文
共 64 条
[1]   Regulation of chromosomally mediated multiple antibiotic resistance: the mar regulon [J].
Alekshun, MN ;
Levy, SB .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1997, 41 (10) :2067-2075
[2]   The mar regulon:: multiple resistance to antibiotics and other toxic chemicals [J].
Alekshun, MN ;
Levy, SB .
TRENDS IN MICROBIOLOGY, 1999, 7 (10) :410-413
[3]   REPRESSOR MUTATIONS IN THE MARRAB OPERON THAT ACTIVATE OXIDATIVE STRESS GENES AND MULTIPLE ANTIBIOTIC-RESISTANCE IN ESCHERICHIA-COLI [J].
ARIZA, RR ;
COHEN, SP ;
BACHHAWAT, N ;
LEVY, SB ;
DEMPLE, B .
JOURNAL OF BACTERIOLOGY, 1994, 176 (01) :143-148
[4]  
BREMER H, 1996, ESCHERICHIA COLI SAL, P1553
[5]   ENDONUCLEASE-IV OF ESCHERICHIA-COLI IS INDUCED BY PARAQUAT [J].
CHAN, E ;
WEISS, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (10) :3189-3193
[6]   SALICYLATE INDUCTION OF ANTIBIOTIC-RESISTANCE IN ESCHERICHIA-COLI - ACTIVATION OF THE MAR OPERON AND A MAR-INDEPENDENT PATHWAY [J].
COHEN, SP ;
LEVY, SB ;
FOULDS, J ;
ROSNER, JL .
JOURNAL OF BACTERIOLOGY, 1993, 175 (24) :7856-7862
[7]   GENETIC AND FUNCTIONAL-ANALYSIS OF THE MULTIPLE ANTIBIOTIC-RESISTANCE (MAR) LOCUS IN ESCHERICHIA-COLI [J].
COHEN, SP ;
HACHLER, H ;
LEVY, SB .
JOURNAL OF BACTERIOLOGY, 1993, 175 (05) :1484-1492
[8]  
DANGI B, 2001, J MOL BIOL, V313, P1067
[9]   Redox signaling and gene control in the Escherichia coli soxRS oxidative stress regulon - A review [J].
Demple, B .
GENE, 1996, 179 (01) :53-57
[10]   In vivo kinetics of a redox-regulated transcriptional switch [J].
Ding, HG ;
Demple, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (16) :8445-8449