Monotone Riemannian metrics and relative entropy on noncommutative probability spaces

被引:100
作者
Lesniewski, A
Ruskai, MB
机构
[1] Paribas Capital Markets, New York, NY 10019 USA
[2] Univ Massachusetts Lowell, Dept Math, Lowell, MA 01854 USA
关键词
D O I
10.1063/1.533053
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use the relative modular operator to define a generalized relative entropy for any convex operator function g on (0,infinity) satisfying g(1)=0. We show that these convex operator functions can be partitioned into convex subsets, each of which defines a unique symmetrized relative entropy, a unique family (parametrized by density matrices) of continuous monotone Riemannian metrics, a unique geodesic distance on the space of density matrices, and a unique monotone operator function satisfying certain symmetry and normalization conditions. We describe these objects explicitly in several important special cases, including g(w)=-log w, which yields the familiar logarithmic relative entropy. The relative entropies, Riemannian metrics, and geodesic distances obtained by our procedure all contract under completely positive, trace-preserving maps. We then define and study the maximal contraction associated with these quantities. (C) 1999 American Institute of Physics. [S0022-2488(99)01410-3].
引用
收藏
页码:5702 / 5724
页数:23
相关论文
共 38 条
[1]   SPREADING OF SETS IN PRODUCT SPACES AND HYPERCONTRACTION OF MARKOV OPERATOR [J].
AHLSWEDE, R ;
GACS, P .
ANNALS OF PROBABILITY, 1976, 4 (06) :925-939
[2]  
ARAKI H, 1987, P 8 INT C MATH PHYS, P354
[3]  
Araki H, 1976, PUBL RES I MATH SCI, V11, P809, DOI DOI 10.2977/PRIMS/1195191148
[4]  
Arveson W. B., 1969, ACTA MATH, V123, P141, DOI 10.1007/BF02392388
[5]  
Bratteli O., 1981, OPERATOR ALGEBRAS QU
[6]   AN EXTENDED CENCOV CHARACTERIZATION OF THE INFORMATION METRIC [J].
CAMPBELL, LL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 98 (01) :135-141
[7]  
CENCOV NN, 1982, T MATH MONOGR, V53
[8]   COMPLETELY POSITIVE LINEAR MAPS ON COMPLEX MATRICES [J].
CHOI, MD .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 10 (03) :285-290
[9]  
CHOI MD, 1993, LINEAR ALGEBRA APPL, V2082, P29
[10]   RELATIVE ENTROPY UNDER MAPPINGS BY STOCHASTIC MATRICES [J].
COHEN, JE ;
IWASA, Y ;
RAUTU, G ;
RUSKAI, MB ;
SENETA, E ;
ZBAGANU, G .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1993, 179 :211-235