Satellite-based modeling of permafrost temperatures in a tundra lowland landscape

被引:75
作者
Langer, Moritz [1 ]
Westermann, Sebastian [2 ]
Heikenfeld, Max [1 ]
Dorn, Wolfgang [1 ]
Boike, Julia [1 ]
机构
[1] Alfred Wegener Inst Polar & Marine Res, Potsdam, Germany
[2] Univ Oslo, Inst Geog, Oslo, Norway
关键词
Permafrost modeling; Thermal state of permafrost; Thaw depth; MODIS; Land surface temperature; GlobSnow; SUMMER SURFACE TEMPERATURES; ERA-INTERIM REANALYSIS; WET POLYGONAL TUNDRA; ARCTIC TUNDRA; SNOW-COVER; TEMPORAL VARIATIONS; AIR TEMPERATURES; NORTHERN SIBERIA; ENERGY BALANCE; ACTIVE LAYER;
D O I
10.1016/j.rse.2013.03.011
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Remote sensing offers great potential for detecting changes of the thermal state of permafrost and active layer dynamics in the context of Arctic warming. This study presents a comprehensive feasibility analysis of satellite-based permafrost modeling for a typical lowland tundra landscape in the Lena River Delta, Siberia. We assessed the performance of a transient permafrost model which is forced by time series of land surface temperatures (LSTs) and snow water equivalents (SWEs) obtained from MODIS and GlobSnow products. Both the satellite products and the model output were evaluated on the basis of long-term field measurements from the Samoylov permafrost observatory. The model was found to successfully reproduce the evolution of the permafrost temperature and freeze-thaw dynamics when calibrated with ground measurements. Monte-Carlo simulations were performed in order to evaluate the impact of inaccuracies in the model forcing and uncertainties in the parameterization. The sensitivity analysis showed that a correct SWE forcing and parameterization of the snow's thermal properties are essential for reliable permafrost modeling. In the worst case, the bias in the modeled permafrost temperatures can amount to 5 degrees C. For the thaw depth, a maximum uncertainty of about +/- 15 cm is found due to possible uncertainties in the soil composition. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:12 / 24
页数:13
相关论文
共 77 条
[61]  
Sturm M, 2001, J CLIMATE, V14, P336, DOI 10.1175/1520-0442(2001)014<0336:SSIIAT>2.0.CO
[62]  
2
[63]   Verification of the new ECMWF ERA-Interim reanalysis over France [J].
Szczypta, C. ;
Calvet, J. -C. ;
Albergel, C. ;
Balsamo, G. ;
Boussetta, S. ;
Carrer, D. ;
Lafont, S. ;
Meurey, C. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2011, 15 (02) :647-666
[64]   IMPLEMENTING HEMISPHERICAL SNOW WATER EQUIVALENT PRODUCT ASSIMILATION WEATHER STATION OBSERVATIONS AND SPACEBORNE MICROWAVE DATA [J].
Takala, M. ;
Luojus, K. ;
Pulliainen, J. ;
Derksen, C. ;
Lemmetyinen, J. ;
Kaernae, J-P ;
Koskinen, J. ;
Bojkov, B. .
2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, :3768-3771
[65]  
Van Everdingen R.O., 1998, MULTILANGUAGE GLOSSA
[66]  
Vries D. A. De., 1952, Mededelingen van de Landbouwhogeschool, V52, P1
[67]   Soil moisture from operational meteorological satellites [J].
Wagner, Wolfgang ;
Naeimi, Vahid ;
Scipal, Klaus ;
de Jeu, Richard ;
Martinez-Fernandez, Jose .
HYDROGEOLOGY JOURNAL, 2007, 15 (01) :121-131
[68]   A generalized split-window algorithm for retrieving land-surface temperature from space [J].
Wan, ZM ;
Dozier, J .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1996, 34 (04) :892-905
[69]   Integrating peatlands and permafrost into a dynamic global vegetation model: 1. Evaluation and sensitivity of physical land surface processes [J].
Wania, R. ;
Ross, I. ;
Prentice, I. C. .
GLOBAL BIOGEOCHEMICAL CYCLES, 2009, 23
[70]   Integrating peatlands and permafrost into a dynamic global vegetation model: 2. Evaluation and sensitivity of vegetation and carbon cycle processes [J].
Wania, R. ;
Ross, I. ;
Prentice, I. C. .
GLOBAL BIOGEOCHEMICAL CYCLES, 2009, 23