Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography

被引:75
作者
Hori, Y
Yasuno, Y
Sakai, S
Matsumoto, M
Sugawara, T
Madjarova, VD
Yamanari, M
Makita, S
Araki, T
Itoh, M
Yatagai, T
机构
[1] Univ Tsukuba, Inst Phys Appl, Computat Opt Grp, Tsukuba, Ibaraki 3058573, Japan
[2] Kanebo Cosmet Inc, Odawara, Kanagawa, Japan
[3] Univ Tsukuba, Inst Phys Appl, Computat Opt Grp, Tsukuba, Ibaraki 3058573, Japan
[4] Osaka Univ, Grad Sch Engn Sci, Dept Mech Sci & Bioengn, Toyonaka, Osaka 5608531, Japan
[5] Univ Tsukuba, Inst Phys Appl, Tsukuba, Ibaraki 3058573, Japan
关键词
D O I
10.1364/OE.14.001862
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A set of fully automated algorithms that is specialized for analyzing a three-dimensional optical coherence tomography (OCT) volume of human skin is reported. The algorithm set first determines the skin surface of the OCT volume, and a depth-oriented algorithm provides the mean epidermal thickness, distribution map of the epidermis, and a segmented volume of the epidermis. Subsequently, an en face shadowgram is produced by an algorithm to visualize the infundibula in the skin with high contrast. The population and occupation ratio of the infundibula are provided by a histogram-based thresholding algorithm and a distance mapping algorithm. En face OCT slices at constant depths from the sample surface are extracted, and the histogram-based thresholding algorithm is again applied to these slices, yielding a three-dimensional segmented volume of the infundibula. The dermal attenuation coefficient is also calculated from the OCT volume in order to evaluate the skin texture. The algorithm set examines swept-source OCT volumes of the skins of several volunteers, and the results show the high stability, portability and reproducibility of the algorithm. (c) 2006 Optical Society of America.
引用
收藏
页码:1862 / 1877
页数:16
相关论文
共 48 条
[1]   Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography [J].
Chen, ZP ;
Milner, TE ;
Srinivas, S ;
Wang, XJ ;
Malekafzali, A ;
vanGemert, MJC ;
Nelson, JS .
OPTICS LETTERS, 1997, 22 (14) :1119-1121
[2]   Optical coherence tomography using a frequency-tunable optical source [J].
Chinn, SR ;
Swanson, EA ;
Fujimoto, JG .
OPTICS LETTERS, 1997, 22 (05) :340-342
[3]   Sensitivity advantage of swept source and Fourier domain optical coherence tomography [J].
Choma, MA ;
Sarunic, MV ;
Yang, CH ;
Izatt, JA .
OPTICS EXPRESS, 2003, 11 (18) :2183-2189
[4]  
CUNLIFFE WJ, 1989, ACNE, P93
[5]   EUCLIDEAN DISTANCE MAPPING [J].
DANIELSSON, PE .
COMPUTER GRAPHICS AND IMAGE PROCESSING, 1980, 14 (03) :227-248
[6]   Imaging thermally damaged tissue by polarization sensitive optical coherence tomography [J].
de Boer, JF ;
Srinivas, SM ;
Malekafzali, A ;
Chen, ZP ;
Nelson, JS .
OPTICS EXPRESS, 1998, 3 (06) :212-218
[7]   Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography [J].
de Boer, JF ;
Cense, B ;
Park, BH ;
Pierce, MC ;
Tearney, GJ ;
Bouma, BE .
OPTICS LETTERS, 2003, 28 (21) :2067-2069
[8]   Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography [J].
deBoer, JF ;
Milner, TE ;
vanGemert, MJC ;
Nelson, JS .
OPTICS LETTERS, 1997, 22 (12) :934-936
[9]   MEASUREMENT OF INTRAOCULAR DISTANCES BY BACKSCATTERING SPECTRAL INTERFEROMETRY [J].
FERCHER, AF ;
HITZENBERGER, CK ;
KAMP, G ;
ELZAIAT, SY .
OPTICS COMMUNICATIONS, 1995, 117 (1-2) :43-48
[10]   Automated detection of retinal layer structures on optical coherence tomography images [J].
Fernández, DC ;
Salinas, HM ;
Puliafito, CA .
OPTICS EXPRESS, 2005, 13 (25) :10200-10216