A note on density model size testing

被引:2
作者
Biau, R [1 ]
Devroye, L
机构
[1] Univ Paris 06, Lab Stat Theor & Appl, F-75013 Paris, France
[2] McGill Univ, Sch Comp Sci, Montreal, PQ H3A 2K6, Canada
关键词
hypothesis testing; mixture densities; nonparametric estimation; penalization; Vapnik-Chervonenkis dimension;
D O I
10.1109/TIT.2004.825250
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let (F-k) (kgreater than or equal to1). be a nested family of parametric classes of densities with finite Vapnik-Chervonenkis dimension. Let f be a probability density belonging to F-k*, where k* is the unknown smallest integer such that f is an element of F-k. Given a random sample X-1,..., X-n drawn from f, an integer k(o) greater than or equal to 1 and a real number alpha is an element of (0, 1), we introduce a new, simple, explicit alpha-level consistent testing procedure of the null hypothesis {H-0 : k* = k(0)} versus the alternative {H-1 : k* not equal k(0)}. Our method is inspired by the combinatorial tools developed in Devroye and Lugosi [1] and it includes a wide range of density models, such as mixture models, neural networks, or exponential families.
引用
收藏
页码:576 / 581
页数:6
相关论文
共 38 条
[1]  
[Anonymous], 1989, SURVEYS COMBINATORIC
[2]   Risk bounds for model selection via penalization [J].
Barron, A ;
Birgé, L ;
Massart, P .
PROBABILITY THEORY AND RELATED FIELDS, 1999, 113 (03) :301-413
[3]  
BIAU G, 2002, DENSITY ESTIMATION P
[4]  
Billingsley P., 1986, PROBABILITY MEASURE
[5]  
Bishop C. M., 1994, NCRG94004 AST U DEP
[6]   Histograms selection with an Akaike type criterion [J].
Castellan, G .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (08) :729-732
[7]   Computational and inferential difficulties with mixture posterior distributions. [J].
Celeux, G ;
Hurn, M ;
Robert, CP .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2000, 95 (451) :957-970
[8]  
Dacunha-Castelle D, 1999, ANN STAT, V27, P1178
[9]   The estimation of the order of a mixture model [J].
DacunhaCastelle, D ;
Gassiat, E .
BERNOULLI, 1997, 3 (03) :279-299
[10]  
DACUNHACASTELLE D, 1997, PROBABILITY STAT, V1, P285