On graphs with equal algebraic and vertex connectivity

被引:59
作者
Kirkland, SJ
Molitierno, JJ
Neumann, M [1 ]
Shader, BL
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
[2] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
[3] Univ Wyoming, Dept Math, Laramie, WY 82071 USA
关键词
undirected graph; algebraic connectivity; vertex connectivity; Laplacian matrix;
D O I
10.1016/S0024-3795(01)00312-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be an undirected unweighted graph on n vertices, let L be its Laplacian matrix, and let L-# = (l(i,j)(#)) be the group inverse of L. It is known that for L(L-#) := (1/2)max(1less than or equal toi, jless than or equal ton) Sigma(s)(n)=1 \l(i,s)(#) - l(j,s)(#)\, the quantity 1/ L(L-#) is a lower bound on the algebraic connectivity a (G) of G, while the vertex connectivity of G, v(G), is an upper bound on a (G). We characterize the graphs G for which v(G) = a(G) and subsequently prove that if n greater than or equal to v(G)(2), then v(G) = a(G) holds if and only if 1/L(L-#) = a(G) = v(G). We close with an example showing that the equality 1/L(L-#) = a(G) does not necessarily imply that 1/L(L-#) = a(G) = v(G). (C) 2002 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:45 / 56
页数:12
相关论文
共 14 条
[1]  
Bauer F.L., 1969, LINEAR ALGEBRA APPL, V2, P275
[2]  
Campbell S.L., 1991, Generalized Inverses of Linear Transformations
[3]   INCLUSION DOMAINS FOR EIGENVALUES OF STOCHASTIC MATRICES [J].
DEUTSCH, E ;
ZENGER, C .
NUMERISCHE MATHEMATIK, 1971, 18 (02) :182-&
[4]  
FIEDLER M, 1973, CZECH MATH J, V23, P298
[5]  
Horn R. A., 1986, Matrix analysis
[6]   Bounds on the subdominant eigenvalue involving group inverses with applications to graphs [J].
Kirkland, SJ ;
Neumann, M ;
Shader, BL .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 1998, 48 (01) :1-20
[7]   Distances in weighted trees and group inverse of Laplacian matrices [J].
Kirkland, SJ ;
Neumann, M ;
Shader, BL .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1997, 18 (04) :827-841
[8]   On a bound on algebraic connectivity: The case of equality [J].
Kirkland, SJ ;
Neumann, M ;
Shader, BL .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 1998, 48 (01) :65-76
[9]  
KIRKLAND SJ, IN PRESS LINEAR MULT
[10]   DEGREE MAXIMAL GRAPHS ARE LAPLACIAN INTEGRAL [J].
MERRIS, R .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1994, 199 :381-389