共 74 条
Metabolism Changes During Aging in the Hippocampus and Striatum of Glud1 (Glutamate Dehydrogenase 1) Transgenic Mice
被引:13
作者:
Choi, In-Young
[1
,2
,3
]
Lee, Phil
[1
,3
]
Wang, Wen-Tung
[1
]
Hui, Dongwei
[4
,5
]
Wang, Xinkun
[4
,5
]
Brooks, William M.
[1
,2
]
Michaelis, Elias K.
[4
,5
]
机构:
[1] Univ Kansas, Med Ctr, Hoglund Brain Imaging Ctr, Kansas City, KS 66103 USA
[2] Univ Kansas, Med Ctr, Dept Neurol, Kansas City, KS 66103 USA
[3] Univ Kansas, Med Ctr, Dept Mol & Integrat Physiol, Kansas City, KS 66103 USA
[4] Univ Kansas, Higuchi Biosci Ctr, Lawrence, KS 66047 USA
[5] Univ Kansas, Dept Pharmacol & Toxicol, Lawrence, KS 66047 USA
基金:
美国国家卫生研究院;
关键词:
Brain metabolism;
Hippocampus;
Striatum;
Magnetic resonance spectroscopy;
BRAIN ENERGY-METABOLISM;
AGE-RELATED-CHANGES;
N-ACETYLASPARTATE;
OXIDATIVE STRESS;
NMDA RECEPTOR;
NITRIC-OXIDE;
DEPENDENT NEURODEGENERATION;
PEPTIDE NEUROTRANSMITTER;
NEUROCHEMICAL PROFILE;
MOLECULAR-MECHANISMS;
D O I:
10.1007/s11064-014-1239-9
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
The decline in neuronal function during aging may result from increases in extracellular glutamate (Glu), Glu-induced neurotoxicity, and altered mitochondrial metabolism. To study metabolic responses to persistently high levels of Glu at synapses during aging, we used transgenic (Tg) mice that over-express the enzyme Glu dehydrogenase (GDH) in brain neurons and release excess Glu in synapses. Mitochondrial GDH is important in amino acid and carbohydrate metabolism and in anaplerotic reactions. We monitored changes in nineteen neurochemicals in the hippocampus and striatum of adult, middle aged, and aged Tg and wild type (wt) mice, in vivo, using proton (H-1) magnetic resonance spectroscopy. Significant differences between adult Tg and wt were higher Glu, N-acetyl aspartate (NAA), and NAA + NAA-Glu (NAAG) levels, and lower lactate in the Tg hippocampus and striatum than those of wt. During aging, consistent changes in Tg and wt hippocampus and striatum included increases in myo-inositol and NAAG. The levels of glutamine (Gln), a key neurochemical in the Gln-Glu cycle between neurons and astroglia, increased during aging in both the striatum and hippocampus of Tg mice, but only in the striatum of the wt mice. Age-related increases of Glu were observed only in the striatum of the Tg mice.
引用
收藏
页码:446 / 455
页数:10
相关论文