Motion detection of a micromechanical resonator embedded in a d.c. SQUID

被引:158
作者
Etaki, S. [1 ,2 ]
Poot, M. [1 ]
Mahboob, I. [2 ]
Onomitsu, K. [2 ]
Yamaguchi, H. [2 ]
van der Zant, H. S. J. [1 ]
机构
[1] Delft Univ Technol, Kavli Inst Nanosci, NL-2600 GA Delft, Netherlands
[2] NTT Corp, NTT Basic Res Labs, Atsugi, Kanagawa 2430198, Japan
关键词
All Open Access; Bronze;
D O I
10.1038/nphys1057
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Superconducting quantum interference devices (SQUIDs) are the most sensitive detectors of magnetic flux(1) and are also used as quantum two-level systems (qubits)(2). Recent proposals have explored a novel class of devices that incorporate micromechanical resonators into SQUIDs to achieve controlled entanglement of the resonator ground state and a qubit(3) as well as permitting cooling and squeezing of the resonator modes and enabling quantum-limited position detection(4-10). In spite of these intriguing possibilities, no experimental realization of an on-chip, coupled mechanical-resonator-SQUID system has yet been achieved. Here, we demonstrate sensitive detection of the position of a 2 MHz flexural resonator that is embedded into the loop of ad.c. SQUID. We measure the resonator's thermal motion at millikelvin temperatures, achieving an amplifier-limited displacement sensitivity of 10 fm Hz(-1/2) and a position resolution that is 36 times the quantum limit.
引用
收藏
页码:785 / 788
页数:4
相关论文
共 26 条
[11]   Mechanical detection of carbon nanotube resonator vibrations [J].
Garcia-Sanchez, D. ;
Paulo, A. San ;
Esplandiu, M. J. ;
Perez-Murano, F. ;
Forro, L. ;
Aguasca, A. ;
Bachtold, A. .
PHYSICAL REVIEW LETTERS, 2007, 99 (08)
[12]   Generation of squeezed states of nanomechanical resonator using three-wave mixing [J].
Huo, Wen Yi ;
Long, Gui Lu .
APPLIED PHYSICS LETTERS, 2008, 92 (13)
[13]   Nanometre-scale displacement sensing using a single electron transistor [J].
Knobel, RG ;
Cleland, AN .
NATURE, 2003, 424 (6946) :291-293
[14]   QUANTUM NOISE THEORY FOR THE DC SQUID [J].
KOCH, RH ;
VANHARLINGEN, DJ ;
CLARKE, J .
APPLIED PHYSICS LETTERS, 1981, 38 (05) :380-382
[15]   Approaching the quantum limit of a nanomechanical resonator [J].
LaHaye, MD ;
Buu, O ;
Camarota, B ;
Schwab, KC .
SCIENCE, 2004, 304 (5667) :74-77
[16]   Quantum-state engineering with Josephson-junction devices [J].
Makhlin, Y ;
Schön, G ;
Shnirman, A .
REVIEWS OF MODERN PHYSICS, 2001, 73 (02) :357-400
[17]  
Mück M, 2001, APPL PHYS LETT, V78, P967, DOI 10.1063/1.1347384
[18]   Measuring nanomechanical motion with a microwave cavity interferometer [J].
Regal, C. A. ;
Teufel, J. D. ;
Lehnert, K. W. .
NATURE PHYSICS, 2008, 4 (07) :555-560
[19]   Putting mechanics into quantum mechanics [J].
Schwab, KC ;
Roukes, ML .
PHYSICS TODAY, 2005, 58 (07) :36-42
[20]   Critical field for complete vortex expulsion from narrow superconducting strips [J].
Stan, G ;
Field, SB ;
Martinis, JM .
PHYSICAL REVIEW LETTERS, 2004, 92 (09) :097003-1