malT encodes the central activator of the maltose system in Escherichia coli, a gene that is typically under positive control of the cAMP/CAP catabolite repression system. When cells were grown in tryptone broth, the addition of glycerol reduced malT expression two- to threefold. Phosphorylation of glycerol to glycerol-3-phosphate (G3P) was necessary for this repression, but further metabolism to dihydroxyacetone phosphate was not. Mutants lacking adenylate cyclase and harbouring a crp* mutation (synthesizing a cAMP receptor protein that is independent of cAMP) no longer repressed a transcriptional malT-lacZ fusion but still repressed a translational malT-lacZ fusion. Similar results were obtained with a mutant lacking enzyme IIA(Glc). For the translational fusion (in a cya crp* genetic background) to be repressed by glycerol, a drop to pH 5 of the growth medium was necessary. Thus, while transcriptional repression by glycerol requires enzyme IIA(Glc), cAMP and CAP, pH-mediated translational repression is cAMP independent. Other sugars that are not transported by the phosphotransferase system, most notably D-xylose, showed the same effect as glycerol.