Identification and biochemical characterization of a novel nortriterpene inhibitor of the human lymphocyte voltage-gated potassium channel, Kv1.3

被引:92
作者
Felix, JP
Bugianesi, RM
Schmalhofer, WA
Borris, R
Goetz, MA
Hensens, OD
Bao, JM
Kayser, F
Parsons, WH
Rupprecht, K
Garcia, ML
Kaczorowski, GJ
Slaughter, RS
机构
[1] Merck Res Labs, Dept Nat Prod Chem, Dept Membrane Biochem & Biophys, Rahway, NJ 07065 USA
[2] Merck Res Labs, Dept Med Chem, Dept Membrane Biochem & Biophys, Rahway, NJ 07065 USA
关键词
D O I
10.1021/bi982954w
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A novel nortriterpene, termed correolide, purified from the tree Spachea correae, inhibits Kv1.3, a Shaker-type delayed rectifier potassium channel present in human T lymphocytes. Correolide inhibits Rb-86(+) efflux through Kv1.3 channels expressed in CHO cells (IC50 86 nM; Hill coefficient 1) and displays a defined structure-activity relationship. Potency in this assay increases with preincubation time and with time after channel opening. Correolide displays marked selectivity against numerous receptors and voltage- and ligand-gated ion channels. Although correolide is most potent as a Kv1.3 inhibitor, it blocks all other members of the Kv1 family with 4-14-fold lower potency. C20-29-[H-3]dihydrocorreolide (diTC) was prepared and shown to bind in a specific, saturable, and reversible fashion (K-d = 11 nM) to a single class of sites in membranes prepared from CHO/Kv1.3 cells. The molecular pharmacology and stoichiometry of this binding reaction suggest that one diTC site is present per Kv1.3 channel tetramer. This site is allosterically coupled to peptide and potassium binding sites in the pore of the channel. DiTC binding to human brain synaptic membranes identifies channels composed of other Kv1 family members. Correolide depolarizes human T cells to the same extent as peptidyl inhibitors of Kv1.3, suggesting that it is a candidate for development as an immunosuppressant. Correolide is the first potent, small molecule inhibitor of Kv1 series channels to be identified from a natural product source and will be useful as a probe for studying potassium channel structure and the physiological role of such channels in target tissues of interest.
引用
收藏
页码:4922 / 4930
页数:9
相关论文
共 44 条
[1]   TOPOLOGY OF THE PORE-REGION OF A K+ CHANNEL REVEALED BY THE NMR-DERIVED STRUCTURES OF SCORPION TOXINS [J].
AIYAR, J ;
WITHKA, JM ;
RIZZI, JP ;
SINGLETON, DH ;
ANDREWS, GC ;
LIN, W ;
BOYD, J ;
HANSON, DC ;
SIMON, M ;
DETHLEFS, B ;
LEE, CL ;
HALL, JE ;
GUTMAN, GA ;
CHANDY, KG .
NEURON, 1995, 15 (05) :1169-1181
[2]  
BAKER RK, 1998, Patent No. 5679705
[3]  
BAKER RK, 1998, Patent No. 5363478
[4]  
BAKER RK, 1998, Patent No. 5679156
[5]   Heterogeneity in K+ channel transcript expression detected in isolated ferret cardiac myocytes [J].
Brahmajothi, MV ;
Morales, MJ ;
Rasmusson, RL ;
Campbell, DL ;
Strauss, HC .
PACE-PACING AND CLINICAL ELECTROPHYSIOLOGY, 1997, 20 (02) :388-396
[6]   The SAR of UK-78,282: A novel blocker of human T cell Kv1.3 potassium channels [J].
Burgess, LE ;
Koch, K ;
Cooper, K ;
Biggers, MS ;
Ramchandani, M ;
Smitrovich, JH ;
Gilbert, EJ ;
Bruns, MJ ;
Mather, RJ ;
Donovan, CB ;
Hanson, DC .
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 1997, 7 (08) :1047-1052
[7]   Ion channels in the immune system as targets for immunosuppression [J].
Cahalan, MD ;
Chandy, KG .
CURRENT OPINION IN BIOTECHNOLOGY, 1997, 8 (06) :749-756
[8]  
Castle N. A., 1997, Biophysical Journal, V72, pA141
[9]  
CHANDY KG, 1995, HDB RECEPTORS CHANNE
[10]  
Defarias FP, 1995, RECEPTOR CHANNEL, V3, P273