Reduced graphene oxide/titanium dioxide composites for supercapacitor electrodes: shape and coupling effects

被引:200
作者
Xiang, Chengcheng [1 ,2 ,3 ]
Li, Ming [1 ]
Zhi, Mingjia [1 ,3 ]
Manivannan, Ayyakkannu [3 ]
Wu, Nianqiang [1 ]
机构
[1] W Virginia Univ, Dept Mech & Aerosp Engn, WVNano Initiat, Morgantown, WV 26506 USA
[2] W Virginia Univ, Dept Ind & Management Syst Engn, Morgantown, WV 26506 USA
[3] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA
关键词
ENERGY-STORAGE; ELECTROCHEMICAL-BEHAVIOR; IRON-OXIDE; CARBON; PERFORMANCE; FILMS; TIO2; NANOSTRUCTURES; NANOCOMPOSITES; NANOPARTICLES;
D O I
10.1039/c2jm33177b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
TiO2 nanobelts (NBs) and nanoparticles (NPs) have been coupled with the chemically reduced graphene oxide (rGO) to form nanocomposites which are used as supercapacitor electrodes. The specific capacitance of rGO-TiO2 composites is higher than that of monolithic rGO, TiO2 NPs or NBs. The optimal electrochemical performance is achieved with the rGO-TiO2 composites at a rGO : TiO2 mass ratio of 7 : 3. In addition, the rGO-TiO2 NBs exhibit better performance than the rGO-TiO2 NPs in terms of specific capacitance, rate capability, energy density and power density. The specific capacitances of rGO-TiO2 NBs and rGO-TiO2 NPs with a mass ratio of 7 : 3 are 225 F g(-1) and 62.8 F g(-1) at a discharge current density of 0.125 A g(-1), respectively. The better performance of the rGO-TiO2 NBs is attributed to the nanobelt's unique shape, better charge transport property and larger area of contact with the rGO nanosheet.
引用
收藏
页码:19161 / 19167
页数:7
相关论文
共 43 条
[1]   A new route towards nanoporous TiO2 as powders or thin films from the thermal treatment of titanium-based hybrid materials [J].
Ahmad, Sana ;
Jousseaume, Bernard ;
Toupance, Thierry ;
Babot, Odile ;
Campet, Guy ;
Labrugere, Christine ;
Broetz, Joachim ;
Kunz, Ulrike .
DALTON TRANSACTIONS, 2012, 41 (01) :292-299
[2]   High Pseudocapacitance from Ultrathin V2O5 Films Electrodeposited on Self-Standing Carbon-Nanofiber Paper [J].
Ghosh, Arunabha ;
Ra, Eun Ju ;
Jin, Meihua ;
Jeong, Hae-Kyung ;
Kim, Tae Hyung ;
Biswas, Chandan ;
Lee, Young Hee .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (13) :2541-2547
[3]   Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors [J].
Hu, Chi-Chang ;
Chang, Kuo-Hsin ;
Lin, Ming-Champ ;
Wu, Yung-Tai .
NANO LETTERS, 2006, 6 (12) :2690-2695
[4]   Symmetrical MnO2-Carbon Nanotube-Textile Nanostructures for Wearable Pseudocapacitors with High Mass Loading [J].
Hu, Liangbing ;
Chen, Wei ;
Xie, Xing ;
Liu, Nian ;
Yang, Yuan ;
Wu, Hui ;
Yao, Yan ;
Pasta, Mauro ;
Alshareef, Husam N. ;
Cui, Yi .
ACS NANO, 2011, 5 (11) :8904-8913
[5]   PREPARATION OF GRAPHITIC OXIDE [J].
HUMMERS, WS ;
OFFEMAN, RE .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1958, 80 (06) :1339-1339
[6]   X-ray Diffraction Patterns of Thermally-reduced Graphenes [J].
Ju, Hae-Mi ;
Choi, Sung-Ho ;
Huh, Seung Hun .
JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2010, 57 (06) :1649-1652
[7]  
Kim SH, 2009, INT J ELECTROCHEM SC, V4, P1489
[8]   Single-crystalline Ni(OH)2 and NiO nanoplatelet arrays as supercapacitor electrodes [J].
Li, Jiangtian ;
Zhao, Wei ;
Huang, Fuqiang ;
Manivannan, Ayyakkannu ;
Wu, Nianqiang .
NANOSCALE, 2011, 3 (12) :5103-5109
[9]   Electrochemical Behavior of Single-Walled Carbon Nanotube Supercapacitors under Compressive Stress [J].
Li, Xin ;
Rong, Jiepeng ;
Wei, Bingqing .
ACS NANO, 2010, 4 (10) :6039-6049
[10]   Adsorption and desorption of stearic acid self-assembled monolayers on aluminum oxide [J].
Lim, Min Soo ;
Feng, Ke ;
Chen, Xinqi ;
Wu, Nianqiang ;
Raman, Aparna ;
Nightingale, Joshua ;
Gawalt, Ellen S. ;
Korakakis, Dimitris ;
Hornak, Larry A. ;
Timperman, Aaron T. .
LANGMUIR, 2007, 23 (05) :2444-2452