Signal modeling with self-similar alpha-stable processes: The fractional Levy stable motion model

被引:38
作者
Kogon, SM [1 ]
Manolakis, DG [1 ]
机构
[1] BOSTON COLL,INST SPACE RES,CHESTNUT HILL,MA 02167
关键词
Image enhancement - Mathematical models;
D O I
10.1109/78.492557
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The purpose of this correspondence is the introduction of fractional Levy stable motion (fLsm) as a model for signals with long-memory and high variability commonly encountered in natural processes. We present a concise description of this model from a signal processing viewpoint and its successful application to real-world infrared signals for the purpose of resolution enhancement.
引用
收藏
页码:1006 / 1010
页数:5
相关论文
共 13 条
[1]   METHOD FOR SIMULATING STABLE RANDOM-VARIABLES [J].
CHAMBERS, JM ;
MALLOWS, CL ;
STUCK, BW .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1976, 71 (354) :340-344
[2]   COMPUTER RENDERING OF STOCHASTIC-MODELS [J].
FOURNIER, A ;
FUSSELL, D ;
CARPENTER, L .
COMMUNICATIONS OF THE ACM, 1982, 25 (06) :371-384
[3]   APPROACH TO AN IRREGULAR TIME-SERIES ON THE BASIS OF THE FRACTAL THEORY [J].
HIGUCHI, T .
PHYSICA D-NONLINEAR PHENOMENA, 1988, 31 (02) :277-283
[4]  
KOGON S, 1995, P 29 AS C SIGN SYST
[5]  
KOGON SM, 1995, P ICASSP 95 DETR, P1597
[6]  
Mandelbrot B.B., 1983, FRACTAL GEOMETRY NAT
[7]   FRACTIONAL BROWNIAN MOTIONS FRACTIONAL NOISES AND APPLICATIONS [J].
MANDELBROT, BB ;
VANNESS, JW .
SIAM REVIEW, 1968, 10 (04) :422-+
[8]   LONG-RANGE ANTICORRELATIONS AND NON-GAUSSIAN BEHAVIOR OF THE HEARTBEAT [J].
PENG, CK ;
MIETUS, J ;
HAUSDORFF, JM ;
HAVLIN, S ;
STANLEY, HE ;
GOLDBERGER, AL .
PHYSICAL REVIEW LETTERS, 1993, 70 (09) :1343-1346
[9]  
Samoradnitsky G., 1994, Stable Non-Gaussian Random Processes
[10]  
SAMORODNITSKY G, 1992, NEW DIRECTIONS TIM 2, P325