The stability boundary of synchronized states in globally coupled dynamical systems

被引:14
作者
Glendinning, P [1 ]
机构
[1] Univ London Queen Mary & Westfield Coll, Sch Math Sci, London E1 4NS, England
关键词
D O I
10.1016/S0375-9601(99)00417-X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The stability boundary of synchronized states in families of globally coupled map lattices and differential equations are studied. It is shown that this boundary may have a very complicated structure in a wide variety of systems. This explains why states can go through sequences of desynchronization and resynchronization as a parameter is varied: in 'typical' systems, between any two parameter values at which synchronized states are unstable there are parameter values at which synchronized states are stable! (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:129 / 134
页数:6
相关论文
共 17 条
[1]  
[Anonymous], 1993, CHAOS DYNAMICAL SYST
[2]   On the unfolding of a blowout bifurcation [J].
Ashwin, P ;
Aston, PJ ;
Nicol, M .
PHYSICA D, 1998, 111 (1-4) :81-95
[3]  
ASHWIN P, 1999, IN PRESS NONLINEARIT
[4]  
BALMFORTH NJ, 1998, PANDORAS LATTICE DYN
[5]  
BANAJI M, 1999, IN PRESS PHYS LETT A
[6]   Collective chaos and noise in the globally coupled complex Ginzburg-Landau equation [J].
Chabanol, ML ;
Hakim, V ;
Rappel, WJ .
PHYSICA D, 1997, 103 (1-4) :273-293
[7]   Non-normal parameter blowout bifurcation: An example in a truncated mean-field dynamo model [J].
Covas, E ;
Ashwin, P ;
Tavakol, R .
PHYSICAL REVIEW E, 1997, 56 (06) :6451-6458
[8]   Stability of synchronous chaos and on-off intermittency in coupled map lattices [J].
Ding, MZ ;
Yang, WM .
PHYSICAL REVIEW E, 1997, 56 (04) :4009-4016
[9]   STABILITY THEORY OF SYNCHRONIZED MOTION IN COUPLED-OSCILLATOR SYSTEMS [J].
FUJISAKA, H ;
YAMADA, T .
PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (01) :32-47
[10]   DYNAMICS OF THE GLOBALLY COUPLED COMPLEX GINZBURG-LANDAU EQUATION [J].
HAKIM, V ;
RAPPEL, WJ .
PHYSICAL REVIEW A, 1992, 46 (12) :R7347-R7350