Non-normal parameter blowout bifurcation: An example in a truncated mean-field dynamo model

被引:35
作者
Covas, E
Ashwin, P
Tavakol, R
机构
[1] Univ London Queen Mary & Westfield Coll, Sch Math Sci, Astron Unit, London E1 4NS, England
[2] Univ Surrey, Dept Math & Comp Sci, Guildford GU2 5XH, Surrey, England
来源
PHYSICAL REVIEW E | 1997年 / 56卷 / 06期
关键词
D O I
10.1103/PhysRevE.56.6451
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We examine global dynamics and bifurcations occurring in a truncated model of a stellar mean-field dy name. This model has symmetry-forced invariant subspaces for the dynamics and we find examples of transient type I intermittency and blowout bifurcations to transient on-off intermittency, involving laminar phases in the invariant submanifold. In particular, our model provides examples of blowout bifurcations that occur on varying a non-normal parameter that is, the parameter varies the dynamics within the invariant subspace at the same time as the dynamics normal to it. As a consequence of this we find that the Lyapunov exponents do not vary smoothly and the blowout bifurcation occurs over a range of parameter values rather than a point in the parameter space.
引用
收藏
页码:6451 / 6458
页数:8
相关论文
共 20 条
[1]   RIDDLED BASINS [J].
Alexander, J. C. ;
Yorke, James A. ;
You, Zhiping ;
Kan, I. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1992, 2 (04) :795-813
[2]  
[Anonymous], 1997, AUTO 97: Continuation and Bifurcation Software for Ordinary Differential Equations, user's Manual
[3]  
[Anonymous], LECT SOLAR PLANETARY
[4]   BUBBLING OF ATTRACTORS AND SYNCHRONIZATION OF CHAOTIC OSCILLATORS [J].
ASHWIN, P ;
BUESCU, J ;
STEWART, I .
PHYSICS LETTERS A, 1994, 193 (02) :126-139
[5]   From attractor to chaotic saddle: A tale of transverse instability [J].
Ashwin, P ;
Buescu, J ;
Stewart, I .
NONLINEARITY, 1996, 9 (03) :703-737
[6]   From high dimensional chaos to stable periodic orbits: The structure of parameter space [J].
Barreto, E ;
Hunt, BR ;
Grebogi, C ;
Yorke, JA .
PHYSICAL REVIEW LETTERS, 1997, 78 (24) :4561-4564
[7]  
CINKAYA TY, 1996, PHYS REV LETT, V77, P5039
[8]  
Covas E, 1997, ASTRON ASTROPHYS, V317, P610
[9]   Crisis-induced intermittency in truncated mean field dynamos [J].
Covas, E ;
Tavakol, R .
PHYSICAL REVIEW E, 1997, 55 (06) :6641-6645
[10]   Optimal periodic orbits of chaotic systems [J].
Hunt, BR ;
Ott, E .
PHYSICAL REVIEW LETTERS, 1996, 76 (13) :2254-2257