From attractor to chaotic saddle: A tale of transverse instability

被引:309
作者
Ashwin, P
Buescu, J
Stewart, I
机构
[1] UNIV WARWICK,INST MATH,NONLINEAR SYST LAB,COVENTRY CV4 7AL,W MIDLANDS,ENGLAND
[2] UNIV SURREY,DEPT MATH & COMP SCI,GUILDFORD GU2 5XH,SURREY,ENGLAND
[3] INST SUPER TECN,DEPT MATEMAT,P-1100 LISBON,PORTUGAL
关键词
D O I
10.1088/0951-7715/9/3/006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Suppose that a dynamical system possesses an invariant submanifold, and the restriction of the system to this submanifold has a chaotic attractor A. Under which conditions is A an attractor for the original system, and in what sense? We characterize the transverse dynamics near A in terms of the normal Liapunov spectrum of A. In particular, we emphasize the role of invariant measures on A. Our results identify the points at which A: (1) ceases to be asymptotically stable, possibly developing a locally riddled basin; (2) ceases to be an attractor; (3) becomes a transversely repelling chaotic saddle. We show, in the context of what we call 'normal parameters' how these transitions can be viewed as being robust. Finally, we discuss some numerical examples displaying these transitions.
引用
收藏
页码:703 / 737
页数:35
相关论文
共 54 条
  • [1] 24Walters P., 2000, An Introduction to Ergodic Theory, V79
  • [2] GEODESIC-FLOWS, INTERVAL MAPS, AND SYMBOLIC DYNAMICS
    ADLER, R
    FLATTO, L
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 25 (02) : 229 - 334
  • [3] RIDDLED BASINS
    Alexander, J. C.
    Yorke, James A.
    You, Zhiping
    Kan, I.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1992, 2 (04): : 795 - 813
  • [4] Attractors stuck on to invariant subspaces
    Ashwin, P
    [J]. PHYSICS LETTERS A, 1995, 209 (5-6) : 338 - 344
  • [5] SYMMETRY GROUPS OF ATTRACTORS
    ASHWIN, P
    MELBOURNE, I
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1994, 126 (01) : 59 - 78
  • [6] BUBBLING OF ATTRACTORS AND SYNCHRONIZATION OF CHAOTIC OSCILLATORS
    ASHWIN, P
    BUESCU, J
    STEWART, I
    [J]. PHYSICS LETTERS A, 1994, 193 (02) : 126 - 139
  • [7] Symmetry breaking bifurcations of chaotic attractors
    Aston, PJ
    Dellnitz, M
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1995, 5 (06): : 1643 - 1676
  • [8] ON ITERATIONS OF 1 - AX-2 ON ( - 1, 1)
    BENEDICKS, M
    CARLESON, L
    [J]. ANNALS OF MATHEMATICS, 1985, 122 (01) : 1 - 25
  • [9] SINAI-BOWEN-RUELLE MEASURES FOR CERTAIN HENON MAPS
    BENEDICKS, M
    YOUNG, LS
    [J]. INVENTIONES MATHEMATICAE, 1993, 112 (03) : 541 - 576
  • [10] BUESCU J, 1995, THESIS U WARWICK