Attractors stuck on to invariant subspaces

被引:19
作者
Ashwin, P
机构
[1] Institut Non-Linéare de Nice, 06560 Valbonne
关键词
D O I
10.1016/0375-9601(95)00857-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This note considers some attractors for maps with invariant subspaces. An example is presented with a family of attractors (displaying on-off intermittency) that intersect their reflections along a reflection plane. This is a robust example of (a) an attractor that is ''stuck on'' to its basin boundary and (b) two attractors in a symmetric system that collide at a reflection plane without merging. A further example with D-3 symmetry having attractors stuck on to more than one reflection plane is presented.
引用
收藏
页码:338 / 344
页数:7
相关论文
共 22 条
  • [1] RIDDLED BASINS
    Alexander, J. C.
    Yorke, James A.
    You, Zhiping
    Kan, I.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1992, 2 (04): : 795 - 813
  • [2] SYMMETRY GROUPS OF ATTRACTORS
    ASHWIN, P
    MELBOURNE, I
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1994, 126 (01) : 59 - 78
  • [3] BUBBLING OF ATTRACTORS AND SYNCHRONIZATION OF CHAOTIC OSCILLATORS
    ASHWIN, P
    BUESCU, J
    STEWART, I
    [J]. PHYSICS LETTERS A, 1994, 193 (02) : 126 - 139
  • [4] ASHWIN P, 1994, 741994 WARW PREPR
  • [5] ASTON PJ, 1995, IN PRESS INT J BIFUR
  • [6] SYMMETRY-INCREASING BIFURCATION OF CHAOTIC ATTRACTORS
    CHOSSAT, P
    GOLUBITSKY, M
    [J]. PHYSICA D, 1988, 32 (03): : 423 - 436
  • [7] CYCLING CHAOS
    DELLNITZ, M
    FIELD, M
    GOLUBITSKY, M
    MA, J
    HOHMANN, A
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1995, 5 (04): : 1243 - 1247
  • [8] DELLNITZ M, 1994, UHMD187 U HOUST MATH
  • [9] GUCKENHEIMER J, 1991, DSTOOL DYNAMICAL SYS
  • [10] EXPERIMENTAL-OBSERVATION OF ON-OFF INTERMITTENCY
    HAMMER, PW
    PLATT, N
    HAMMEL, SM
    HEAGY, JF
    LEE, BD
    [J]. PHYSICAL REVIEW LETTERS, 1994, 73 (08) : 1095 - 1098