Optimal periodic orbits of chaotic systems

被引:107
作者
Hunt, BR
Ott, E
机构
[1] UNIV MARYLAND, INST PLASMA RES, COLLEGE PK, MD 20742 USA
[2] UNIV MARYLAND, SYST RES INST, COLLEGE PK, MD 20742 USA
[3] UNIV MARYLAND, DEPT ELECT ENGN, COLLEGE PK, MD 20742 USA
[4] UNIV MARYLAND, DEPT PHYS, COLLEGE PK, MD 20742 USA
关键词
D O I
10.1103/PhysRevLett.76.2254
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Invariant sets embedded in a chaotic attractor can generate time averages that differ from the average generated by typical orbits on the attractor. Motivated by two different topics (namely, controlling chaos and riddled basins of attraction), we consider the question of which invariant set yields the largest (optimal) value of an average of a given smooth function of the system state. We present numerical evidence and analysis which indicate that the optimal average is typically achieved by a low period unstable periodic orbit embedded in the chaotic attractor.
引用
收藏
页码:2254 / 2257
页数:4
相关论文
共 16 条
[1]   RIDDLED BASINS [J].
Alexander, J. C. ;
Yorke, James A. ;
You, Zhiping ;
Kan, I. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1992, 2 (04) :795-813
[2]  
[Anonymous], COMMUNICATION
[3]   BUBBLING OF ATTRACTORS AND SYNCHRONIZATION OF CHAOTIC OSCILLATORS [J].
ASHWIN, P ;
BUESCU, J ;
STEWART, I .
PHYSICS LETTERS A, 1994, 193 (02) :126-139
[4]   CHARACTERIZATION OF UNSTABLE PERIODIC-ORBITS IN CHAOTIC ATTRACTORS AND REPELLERS [J].
BIHAM, O ;
WENZEL, W .
PHYSICAL REVIEW LETTERS, 1989, 63 (08) :819-822
[5]   ON THE SYMBOLIC DYNAMICS OF THE HENON MAP [J].
GRASSBERGER, P ;
KANTZ, H ;
MOENIG, U .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (24) :5217-5230
[6]  
HUNT BR, 1991, T AM MATH SOC, V325, P14
[7]  
HUNT BR, IN PRESS
[8]  
Kaplan J., 1979, Lect. Notes Math., P204
[9]  
Lai Y., IN PRESS
[10]   SCALING BEHAVIOR OF CHAOTIC SYSTEMS WITH RIDDLED BASINS [J].
OTT, E ;
SOMMERER, JC ;
ALEXANDER, JC ;
KAN, I ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1993, 71 (25) :4134-4137