Critical and tricritical hard objects on bicolourable random lattices: exact solutions

被引:20
作者
Bouttier, J [1 ]
Di Francesco, P [1 ]
Guitter, E [1 ]
机构
[1] CEA Saclay, Serv Phys Theor, F-91191 Gif Sur Yvette, France
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2002年 / 35卷 / 17期
关键词
D O I
10.1088/0305-4470/35/17/302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We address the general problem of hard objects on random lattices, and emphasize the crucial role played by the colourability of the lattices to ensure the existence of a crystallization transition. We first solve explicitly the naive (colourless) random-lattice version of the hard-square model and find that the only matter critical point is the non-unitary Lee-Yang edge singularity. We then show how to restore the crystallization transition of the hard-square model by considering the same model on bicoloured random lattices. Solving this model exactly, we show moreover that the crystallization transition point lies in the universality class of the Ising model coupled to 2D quantum gravity. We finally extend our analysis to a new two-particle exclusion model, whose regular lattice version involves hard squares of two different sizes. The exact solution of this model on bicolourable random lattices displays a phase diagram with two (continuous and discontinuous) crystallization transition lines meeting at a higher order critical point, in the universality class of the tricritical Ising model coupled to 2D quantum gravity.
引用
收藏
页码:3821 / 3854
页数:34
相关论文
共 26 条
[1]  
Baxter R. J., 1999, Annals of Combinatorics, V3, P191, DOI [DOI 10.1007/BF01608783, 10.1007/BF01608783]
[2]   HARD-SQUARE LATTICE GAS [J].
BAXTER, RJ ;
ENTING, IG ;
TSANG, SK .
JOURNAL OF STATISTICAL PHYSICS, 1980, 22 (04) :465-489
[3]   ENTROPY OF HARD HEXAGONS [J].
BAXTER, RJ ;
TSANG, SK .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (03) :1023-1030
[4]   ISING MODEL FOR LAMBDA TRANSITION AND PHASE SEPARATION IN HE-3-HE-4 MIXTURES [J].
BLUME, M ;
EMERGY, VJ ;
GRIFFITHS, RB .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1971, 4 (03) :1071-+
[5]   PLANAR DIAGRAMS [J].
BREZIN, E ;
ITZYKSON, C ;
PARISI, G ;
ZUBER, JB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 59 (01) :35-51
[6]   CONFORMAL-INVARIANCE AND THE YANG-LEE EDGE SINGULARITY IN 2 DIMENSIONS [J].
CARDY, JL .
PHYSICAL REVIEW LETTERS, 1985, 54 (13) :1354-1356
[7]   Hermitian matrix model with plaquette interaction [J].
Chekhov, L ;
Kristjansen, C .
NUCLEAR PHYSICS B, 1996, 479 (03) :683-696
[8]   CONFORMAL FIELD-THEORIES COUPLED TO 2-D GRAVITY IN THE CONFORMAL GAUGE [J].
DAVID, F .
MODERN PHYSICS LETTERS A, 1988, 3 (17) :1651-1656
[9]   Coloring random triangulations [J].
Di Francesco, P ;
Eynard, B ;
Guitter, E .
NUCLEAR PHYSICS B, 1998, 516 (03) :543-587
[10]   Fully packed O(n=1) model on random Eulerian triangulations [J].
Di Francesco, P ;
Guitter, E ;
Kristjansen, C .
NUCLEAR PHYSICS B, 1999, 549 (03) :657-667