Coloring random triangulations

被引:16
作者
Di Francesco, P [1 ]
Eynard, B
Guitter, E
机构
[1] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA
[2] Univ Durham, Dept Math Sci, Sci Labs, Durham DH1 3HP, England
[3] CEA Saclay, Serv Phys Theor, F-91191 Gif Sur Yvette, France
基金
美国国家科学基金会;
关键词
coloring; folding; random lattice; 2D quantum gravity;
D O I
10.1016/S0550-3213(98)00037-6
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We introduce and solve a two-matrix model for the tri-coloring problem of the vertices of a random triangulation. We present three different solutions: (i) by orthogonal polynomial techniques, (ii) by use of a discrete Hirota bilinear equation, (iii) by direct expansion. The model is found to lie in the universality class of pure two-dimensional quantum gravity, despite the non-polynomiality of its potential. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:543 / 587
页数:45
相关论文
共 16 条
[1]  
Baxter R. J., 2007, EXACTLY SOLVED MODEL
[2]   Q-COLORINGS OF THE TRIANGULAR LATTICE [J].
BAXTER, RJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (14) :2821-2839
[3]   Hermitian matrix model with plaquette interaction [J].
Chekhov, L ;
Kristjansen, C .
NUCLEAR PHYSICS B, 1996, 479 (03) :683-696
[4]   MATRIX MODELS AND GRAPH-COLORING [J].
CICUTA, GM ;
MOLINARI, L ;
MONTALDI, E .
PHYSICS LETTERS B, 1993, 306 (3-4) :245-251
[5]   Meander, folding, and arch statistics [J].
DiFrancesco, P ;
Golinelli, O ;
Guitter, E .
MATHEMATICAL AND COMPUTER MODELLING, 1997, 26 (8-10) :97-147
[6]  
DIFRANCESCO P, 1994, EUROPHYS LETT, V26, P455, DOI 10.1209/0295-5075/26/6/010
[7]   Meanders and the Temperley-Lieb algebra [J].
P. Di Francesco ;
O. Golinelli ;
E. Guitter .
Communications in Mathematical Physics, 1997, 186 (1) :1-59
[8]  
DIFRANCESCO P, 1995, PHYS REP, V254, P1, DOI 10.1016/0370-1573(94)00084-G
[9]   An iterative solution of the three-colour problem on a random lattice [J].
Eynard, B ;
Kristjansen, C .
NUCLEAR PHYSICS B, 1998, 516 (03) :529-542
[10]   PLANAR APPROXIMATION .2. [J].
ITZYKSON, C ;
ZUBER, JB .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (03) :411-421